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A B S T R A C T   

In Pakistan, wetlands are of primary focus as they withstand the effects of floods, recharge groundwater, and 
provide several services in the context of economic, cultural, and climate mitigation aspects. However, the lack of 
field data and huge monitoring costs hinder their sustainable management in Pakistan. In connection with this, 
the current study leverages Google Earth Engine (GEE), earth observation data, and machine learning-based 
Random Forest (RF) algorithm to evaluate spatial-temporal heterogeneities in wetlands in Pakistan between 
1990 and 2020. Additionally, the first high-resolution long-term inventory of wetlands in Pakistan is presented to 
provide a baseline. Our results ascertain an increase in wetlands areas over the last 30 years. The swamps’ area 
increased from 1391.19 km2 in 1990 to 8510.43 km2 in 2020 (2.62% annual change rate). Similarly, the marshes 
area increased between 1990 and 2020 with a ~1.04% annual change rate. Conversely, the water area decreased 
from 8371.97 km2 in 1990 to 7818.34 km2 in 2020. The increase in wetlands could be associated with good 
conservation and planting practices in Pakistan. While these results provide important insights to implement 
conservation practices in the context of wetland sustainability, the resultant data is essential to the national 
wetlands inventory database for future evaluations.   

1. Introduction 

Approximately 6–7 percent of global terrestrial areas are covered 
with wetlands, which provide diverse services including defense against 
floods, climate regulations, provisioning of habitats, and economic ser-
vices through tourism (Liu et al., 2013; Mao et al., 2018). Wetlands are 
one of the world’s most productive ecosystems as they absorb pollutants, 
purify water, recharge groundwater, act as nutrient and sediment sinks, 
and provide fresh water and building material (T. Xu et al., 2019). 
However, anthropogenic activities threaten the sustainability of wet-
lands at local, regional, and global scales (T. Xu et al., 2019). World-
wide, since 1970, more than 35% of the world’s wetlands have vanished 
(X. Xu, Chen, Yang, Jiang, & Zhang, 2020). The rate of loss varies 
significantly from country to country, with developing countries at 
relatively higher risk due to the unavailability of resources, lesser ca-
pabilities for management, and lack of awareness (A. A. Khan & Arshad, 

2014). 
In Pakistan, the term “wetlands” was first discussed in 1967, and on 

21st December 1975, the RAMSAR convention came into action (http 
s://www.ramsar.org/). Initially, only 9 wetlands sites in Pakistan 
were recognized internationally, and the number increased to 16 and 19 
in 2001 and 2013, respectively (A. A. Khan & Arshad, 2014). Area-wise, 
the most dominant wetland types in Pakistan are the inland waters, delta 
marshes, mangroves, lakes and reservoirs, and man-made wetlands (fish 
farms, ponds, paddy fields). Out of 19 RAMSAR sites in Pakistan, 10 are 
in Sindh province and the majority of Sindh wetlands are marshes, 
mangroves, and lakes (A. A. Khan & Arshad, 2014). Also, the mangroves 
of the Indus delta region and Indus dolphins of the Indus wetland region 
are of international importance in the Sindh province f. Four major 
wetlands complexes are prominent in Pakistan which are the 
North-Western Alpine Wetlands Complex (NAWC), Salt Range Wetlands 
Complex (SRWC), Central Indus Wetlands Complex (CIWC), and Makran 
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Coastal Wetlands Complex (MCWC) (A. A. Khan & Arshad, 2014). 
Pakistan having 9.7% of the total area covered with open surface 

water and with 255 total wetlands of national importance, is the 11th 
country globally with the highest wetlands area (A. A. Khan & Arshad, 
2014). Similar to other global regions, Pakistan has lost many 
wetland-covered areas in the past due to the over-exploitation of natural 
resources, diverting water flow, droughts, floods, and increased levels of 
industrial pollutants in the aquatic environment (Chaudhry, 2010). 
Relatedly, wetlands in the sub-tropical and tropical regions have also 
declined due to low precipitation and the conversion of existing land 
into agricultural land to fulfil the needs of the growing population 
(Salimi, Almuktar, & Scholz, 2021). Even though many conservation 
and restoration initiatives are taken over the past decades, the ongoing 
climate change is a significant threat that influences the functions of 
wetlands in Pakistan as it has affected the ecosystems in the country by 
increased temperature stress, flash floods, droughts, and changing hy-
drological patterns. 

In the last two decades, Pakistan has taken many initiatives through 
international and domestic organizations to support wetlands conser-
vation at both regional and national scales. For example, after 2000, 
many Non-Governmental Organizations (NGOs), and international or-
ganizations such as World Wildlife Fund (WWF) have taken conserva-
tion initiatives to sustain wetland ecosystems in Pakistan (H. Khan & 
Baig, 2017; Lei, 2005). Similarly, Pakistan has implemented various 
domestic conservation and plantation strategies such as the recent 
“Billion Tree Tsunami” (A. A. Khan & Arshad, 2014). As a result, some 
recent studies on wetlands at the local and regional levels suggest that 
the wetlands’ situation has improved over the years (Gilani et al., 2021; 
Imran et al., 2021; H. Khan & Baig, 2017). However, it is notable that 
little effort has been put into initiatives for systematic monitoring and 
evaluation of spatial-temporal changes in wetland dynamics in the 
country. While other nations have adopted technology-based informa-
tion systems for wetland monitoring and management (e.g. (Amani 
et al., 2019),), Pakistan still lacks an integrated national-scale moni-
toring mechanism to sustain wetlands as there is no national inventory 
available at the moment to benchmark the state of wetlands and provide 
information on historical changes and future simulations under envi-
ronmental changes. Therefore, this area of research needs to be focused 
to provide information on national-scale changes in the wetlands for 
proper conservation, planning, and management (Chaudhry, 2010). The 
multi-year study of the wetlands ecosystem is among the most critical 
challenges that need to be addressed frequently (Salimi et al., 2021). 
Field surveys, water sampling, and soil sampling are costly and 
time-consuming tasks because of the complex nature of wetlands as well 
as the topographic settings of the environment where wetlands are sit-
uated (Mahdianpari, Granger, et al., 2020). 

Compared with conventional field mapping techniques, Remote 
Sensing (RS) is a cost-effective and efficient technique used to acquire 
detailed spatial and temporal information about wetlands in large areas 
(Guo, Li, Sheng, Xu, & Wu, 2017). Due to the availability of freely 
accessible satellite data, researchers are more interested in the use of RS 
techniques for multi-temporal assessments (Asokan & Anitha, 2019). 
Data from optical satellites especially from Landsat (>40 years series) 
are useful for vegetation monitoring due to their higher revisit time 
(Kaplan, Yigit Avdan, & Avdan, 2019). Despite the advancement in 
remote sensing techniques, there are many challenges in wetland clas-
sification due to their unique characteristics (Amani, Salehi, Mahdavi, & 
Brisco, 2018). Some of the most highlighted problems associated with 
remote sensing of wetlands are higher computation requirements for 
large-scale studies, unavailability of data under poor weather condi-
tions, and difficulty in differentiating individual wetland classes due to 
their similar spectral reflectance (Mahdianpari, Granger, et al., 2020). 
With the addition of new types of sensors and technological capabilities, 
researchers around the globe are investigating new methods, tech-
niques, and algorithms for efficient wetlands studies (Hu, Zhang, Zhang, 
& Wang, 2021; Si Salah, Goldin, Rezgui, Nour El Islam, & Ait-Aoudia, 

2020). The change detection technique is primarily used to monitor 
environmental change, deforestation, and wetland status (Hemati, 
Hasanlou, Mahdianpari, & Mohammadimanesh, 2021). Timely and ac-
curate change analysis allows monitoring of wetlands conditions, state, 
and associated natural and/or human activities (Asokan & Anitha, 
2019). Such an assessment provides potential opportunities for appro-
priate measures to facilitate conservation, restoration, and sustaining 
the wetlands. 

In view of the above, this study fills the existing gap regarding 
national-scale long-term spatial-temporal wetland changes in Pakistan 
at higher resolution. For this purpose, the study first uses GEE for remote 
sensing data acquisition from the GEE data catalogue including Landsat 
archives (Landsat-5, Landsat-7, and Landsat-8) and elevation data. 
Then, by using a machine learning-based Random Forest (RF) algorithm, 
the GEE platform is used for multi-temporal classifications of wetlands 
at the national scale between 1990 and 2020. Lastly, geo-information- 
based modelling and change detection techniques are used for 
comparing wetlands changing patterns across the study area. Relatedly, 
one of the primary objectives of this study is to provide higher-resolution 
wetlands (swamps, marshes, and water) inventory at a national scale 
using open-source cloud-computing-based GEE platform, Landsat ar-
chives, RF algorithm, and GIS software. The mapping and findings on 
changes in wetlands over the past three decades will provide location- 
aware references for effective decisions and resource allocation for the 
restoration and conservation of wetlands—leading to wetland sustain-
ability in Pakistan given their multiple services. 

2. Materials and methods 

2.1. Study area 

Pakistan is situated in a tropical zone, and its climatic conditions 
change from low to severe temperatures. In the southern coastal region 
of Pakistan, the climate is primarily arid with intense monsoon rainfall 
and dry season with the least precipitation. Pakistan is rich in wetlands 
distribution and contains approximately 244 important wetlands sites 
(Fig. 1). Among these, 19 sites are recognized internationally by the 
RAMSAR convention (Fig. 1). The northern part of Pakistan is mostly 
above sea level, with a maximum elevation of 8.5 km. The majority of 
wetlands are concentrated at lower elevations and the southern part of 
the country, whereas the frequency of wetlands decreases with rising 
elevation (A. A. Khan & Arshad, 2014). According to (Chaudhry, 2010), 
wetlands cover roughly 10% of the total area of Pakistan and spread 
over an area of more than 780,000 ha as of 2010. 

2.2. Data acquisition and preprocessing 

2.2.1. Reference data 
The primary data taken as reference material for wetlands classifi-

cation are the RAMSAR site data, the entire wetland site data, and the 
MODIS MCD12Q1.006 LULC product data (Table 1). The 19 RAMSAR 
sites in Pakistan are taken as the base areas for further visualization after 
classification. These sites are further used to define the national-scale 
wetlands inventory of Pakistan. The methodology of this study in-
volves three stages. Initially, the Landsat archive is used inside GEE and 
training samples are collected using high-resolution images. Secondly, 
classification is performed using the RF algorithm and wetlands maps 
are derived along with performing the accuracy assessment. Lastly, 
change detection is performed to analyze wetlands gain/loss trends in 
the last three decades (Fig. 2). Moreover, the data from the National 
Aeronautics and Space Administration’s (NASA) Shuttle Radar Topog-
raphy Mission (SRTM) are used to remove terrain shadow along with 
preparing a mask to remove areas with high elevation as they have a 
minimum frequency of wetlands. 
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2.2.2. Google Earth Engine 
The cloud-computing powered GEE is used for data acquisition, pre- 

processing, feature extraction, ML-based classification, and accuracy 
assessment (Amani et al., 2020; Waleed & Sajjad, 2022). The imple-
mentation of ML-based algorithms and deep learning modules makes 
this platform one of the most used tools in this decade for large-scale 
studies (i.e., national, regional, or global) (Hird, DeLancey, McDermid, 
& Kariyeva, 2017). We use the Landsat satellite data archives for this 
study as it is one of the longest available satellite achieves freely avail-
able in the GEE catalogue as compared with other archives (Mahdian-
pari, Granger, et al., 2020). 

2.2.3. Landsat data availability and pre-processing 
Multispectral Landsat data are taken for the multi-year classification 

of wetlands (Table 1). Landsat-5 Thematic Mapper (TM) images are used 
for 1990 and 2010, Landsat-7 Enhanced Thematic Mapper (ETM) im-
ages are used for 2000, and Landsat-8 Operational Land Imager (OLI) 
images are used for 2020. As seasonal images were unable to cover the 
entire study area (Pakistan’s area > ~796,095 km2), yearly mean 
composites are prepared, each representing the average wetland inun-
dation between both wet and dry seasons of that year (Griffiths, Linden, 
Kuemmerle, & Hostert, 2013). Fig. 3(a) represents the path row of the 
satellite, and the last 30 years’ annual mean precipitation and temper-
ature patterns are shown in Fig. 3(b). Although Landsat-7 ETM data are 
available for the year 2010, we refrain from using it due to the “scan line 
error” reported after 2003 (Storey, Scaramuzza, & Schmidt, 2005). Due 
to induced scan line error, strips-like lines are rendered in images, 
affecting the quality of the acquired data (Hossain, Bujang, Zakaria, & 
Hashim, 2015). Previously, though many algorithms and techniques are 
being provided by several scholars to decrease the effect of scan line 
error, some distortion is still observed in resulting images (Yin, Mar-
iethoz, Sun, & McCabe, 2017). For classification, we use bands 1–5 and 7 
for Landsat-5 and Landsat-7, whereas, for Landsat-8, we use bands 1–7. 

Fig. 1. Study Area map of Pakistan showing elevation, all wetland sites in Pakistan (244) and RAMSAR sites (19) geographical distribution.  

Table 1 
Details of different datasets used in this study.  

Name Summary Spatial 
Resolution 

Acquisition 
Date 

Source 

RAMSAR 
Pakistan 
Sites 

Contains point 
locations of 
RAMSAR- 
recognized sites in 
Pakistan 

Vector 
Data 

2021 https://ramsa 
r.org/ 

Important 
Pakistan 
Wetland 
Sites 

Internationally 
important 
wetlands point 
locations in 
Pakistan 

Vector 
Data 

2014 https://www. 
gislounge. 
com/gis-data- 
worlds-wetla 
nds/ 

Landsat-5 
TM 

Landsat-5 TM data 
with tier-1 
processing level 

30m 1990 & 
2010 

https://develo 
pers.google.co 
m/earth-engin 
e/datasets/ 
catalog/lands 
at 

Landsat-7 
ETM 

Landsat-7 ETM 
data with tier-1 
processing level 

30m 2000 

Landsat-8 
OLI 

Landsat-7 OLI 
data with tier-1 
processing level 

30m 2020 

SRTM DEM Provided by NASA 30m 2000 https://deve 
lopers.google. 
com/earth 
-engine/dat 
asets/catalog/ 
USGS_SRTMG 
L1_003?hl=en 

Climate 
Data 

Annual mean 
precipitation and 
temperature data 
for Pakistan  

1990 to 
2020 

https://climat 
eknowledgepo 
rtal.world 
bank.org/co 
untry/pakistan  
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For terrain shadow masking, we used the ee.Terrain.Shadow algo-
rithm (available at: https://bit.ly/3HR7HBY) and masked the terrain 
using NASA SRTM elevation data. It is evident that wetlands are mainly 
observed below or near sea level (G. dong Wang, Wang, Lu, & Jiang, 
2016; Yang et al., 2017). Also, some studies have reported that during 
the classification, snow areas might be confused with wetlands areas by 
the ML algorithms because of similar spectral characteristics (Gatebe & 
King, 2016). Therefore, to overcome this issue, we analyze RAMSAR 
sites’ elevation and accordingly created a mask of 2500 m. Using this 
mask, we removed all the pixels with an elevation greater than 2500 m. 
As our main focus is important wetland sites only, and their distribution 
lies below 2500 m elevation (Fig. 1), this masking technique is effective 
as most of the northern mountainous areas covered with snow were 
filtered using this mask—resulting in improved classification. 

2.3. Feature extraction 

Previous researches support the use of extracted features for 
enhanced wetlands classification results (Mahdianpari, Granger, et al., 
2020). Features such as spectral indices (SI) are extracted from the 
pre-processed images of Landsat-5, Landsat-7 and Landsat-8 as discussed 
above. Four SIs are used in this study including; 1) the Modified 
Normalized Difference Water Index—mNDWI (H. Xu, 2006), 2) Land 
Surface Water Index—LSWI (Li et al., 2013), 3) the Enhanced Vegetation 
Index—EVI (She et al., 2015), and 4) Normalized Difference Vegetation 
Index—NDVI (Townshend & Justice, 1986). NDVI is the most popular SI 
along with EVI. Both of these SIs are used to study vegetation dynamics. 
LSWI is a good SI for retrieving soil moisture-related information (Y. 
Wang, Zang, & Tian, 2020). Whereas, mNDWI is one of the best SI used 
for open surface water bodies mapping (Du et al., 2016). The modelling 
details of these four spectral indices are given in Equations (1)–(4), 
respectively. 

NDVI =
Bnir − Bred

Bnir + Bred
(1)  

EVI = 2.5 ×
Bnir − Bred

Bnir + 6 × Bred − 7.5 × Bblue + 1
(2)  

LSWI =
Bnir − Bswir

Bnir + Bswir
(3)  

mNDWI =
Bgreen − Bswir

Bgreen + Bswir
(4)  

where Bnir, Bred, Bblue, Bswir, and Bgreen are near-infrared, red, blue, and 
shortwave-infrared bands of Landsat images. 

Using the above-mentioned four SIs, a water-detecting algorithm is 
derived to map water surfaces with the highest possible accuracy (Du 
et al., 2016). The expression used for the water-detecting algorithm is 
given in Equation (5). Furthermore, NDVI and EVI are used together to 
prepare a vegetation mask using a threshold value suggested by (Men-
gue, Fontana, da Silva, Zanotta, & Scottá, 2019). 

((mNDWI >EVI OR mNDWI >NDVI) AND EVI < 0.1) (5)  

2.4. Classification and accuracy assessment 

ML-based supervised classification is performed inside GEE using the 
RF algorithm. Initially, the RF algorithm is fine-tuned using a parametric 
tuning technique, and the best-suited number of trees value is set to 115. 
Later, features including SI (NDVI, EVI, LSWI, and mNDWI), SRTM 
elevation data, vegetation, and water mask are fed to the RF classifier. 
For each year, classification is performed individually using each year’s 
annual mean image and training sample points. Training samples (in the 
form of Global Positioning System (GPS) points) are taken using Very 

Fig. 2. Methodology flowchart adopted in this research.  
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High Resolution (VHR) Google Earth images, MODIS LULC product, and 
False Color Composite (FCC) band combination of Landsat satellite 
images (Fig. 2). Samples between 1000 and 3000 are taken for each class 
using a stratified sampling approach (Dong et al., 2020). Specifically, for 
collecting samples, above mentioned auxiliary remote sensing data is 
overlayed, and only true samples are collected through visual inter-
pretation. Additionally, only those samples are entertained, which 
justify the same land-use characteristics as shown by other data sources 
(for example, water body in VHR Google Earth Image = water class in 
MODIS LULC = Water pixels in Landsat FCC images). Four land use 
classes including marshes, swamps, water, and others, are selected, see 

Fig. 3. Map showing (a) ecological regions of Pakistan, along with Landsat grid tiles, and Path Row information and (b) annual mean precipitation and temperature 
of Pakistan for the last 30 years. 

Table 2 
Details of different wetland types used in this study.  

Name Description 

Marshes Shallow water changes over time and contains submerged aquatic plants, 
grasses, brown mosses, sphagnum moss, ericaceous shrubs, and 
graminoids. 

Swamps Wetlands that are dominated by trees (>30%), and shrubs found in 
associated with other hydrological systems 

Water Open surface water that has no vegetation (lakes, ponds, rivers). 
Other All other classes except wetlands (i.e., agriculture, pasture, forest, 

impervious surface, barren land, desert area, and rangeland).  
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the description of each class in Table 2. The size of training samples is 
solely dependent on the area of each land use class (i.e., minimum 
samples are taken for the water class, whereas maximum samples are 
taken for “others” class). From this classification, wetlands maps are 
produced on a national scale from 1990 to 2020 with ten years gap 
interval—due to slower alteration in such LULC. 

The obtained classified maps are considered reliable only when they 
meet some accuracy criteria. For this study, we use the Producer Ac-
curacy (PA), User Accuracy (UA), Overall Accuracy (OA), F1-score (F1s), 
and Kappa Coefficient (K) as metrics to evaluate the accuracy of resul-
tant maps (Table 3). GPS sample data is divided into 30% and 70% 
proportions, which are then used for validation and training 
respectively. 

2.5. Wetlands change detection 

Change detection is a technique that analyses spatial-temporal trends 
over a period of time. In change detection, we analyze the initial and 
final maps and compute the changes in wetlands. Following other re-
searchers, we use the post-classification-based change detection tech-
nique as it analyses per-pixel change in each class over defined intervals 
(Baqa et al., 2021; Hemati et al., 2021). After performing the change 
detection, area-wise statistical analyses are performed using various 
area change equations. For instance, two area change equations namely 
Magnitude of change (MC) (Shi & Bolt, 1982), and Percent Change (PC) 
(Gilani et al., 2021) are computed using Equations (6) and (7), respec-
tively. The MC represent the difference in area between two years 
(Equation (6)), whereas the PC represents the total area change per class 
per year in percent (Equation (7)). Additionally, the Annual Rate of 
Change (ARC) is evaluated for each class per decade using Equation (8) 
(Puyravaud, 2003). ARC is a statistical approach that works over the 
compound interest law, which evaluated a non-linear change between 
different year intervals, and as result, computes the rate of change in 
percent per given time interval (Gilani et al., 2021). 

MC
(
km2)= if − ii (6)  

PC (%)=
if − ii

ii
× 100 (7)  

ARC (%)=

((
1

tf − ti

)

× ln
(

if

ii

))

× 100 (8)  

where if = area of the final image in km2 unit, ii = area of initial image in 
km2 unit, tf = final image acquisition year, and ti = initial image 
acquisition year. 

3. Results 

3.1. Wetlands classification and accuracy assessment 

The study results in national scale mapping of the most significant 
wetlands in Pakistan. The results from our mapping ascertain that the 
area of wetlands (swamps, marshes and water) increased in the northern 
and southern regions over the last 30 years (Fig. 4). The most noticeable 
increase is observed in swamps and marshes, which is seen from 1990 to 
2000 and from 2000 to 2010. 

The classified maps are validated for their accuracy using UA, PA, 
F1s, K, and OA, (Fig. 5). Fig. 5b–e shows the confusion matrix of the 
resultant wetland classified maps. The swamps and marshes area in-
crease primarily over southern coastal areas. The accuracy assessment 
(Fig. 5(a)) results show a good agreement as values of K and OA are 
greater than 0.90 for each year. In the case of F1s, the values of each 
class are greater than 0.86, which further shows the authenticity of the 
derived wetlands classification results. It is evident that all the classes 
show good reliability as the maximum confusion value between the 
water and marshes class is observed at 10 in the year 2000 (Fig. 5(c)), 
while the rest of the classes have lesser false conversions. 

3.2. Spatio-temporal heterogeneities in wetlands (1990–2020) 

For area-wise statistical calculation, the area for each wetland class is 
estimated using Quantum Geographic Information System (QGIS) 
3.16.7v software (www.qgis.org). The results show that the area of 
wetland classes shows increasing trends for the 1990–2020 period 
(Table 4). In 1990, the highest percentage occupying class was water, 
whereas in 2020 the highest percentage class is marshes. Furthermore, 
during the 1990–2020 interval, the area of swamps (1391.19 Km2) and 
marshes (6782.23 Km2) increased to 8510.43 Km2, and 13904.3 Km2, 
respectively. On contrary, the area of water class (8371.97 Km2) 
decreased to 7818.34 Km2. To further study the per-decade changes and 
spatial-temporal trends of wetlands, we performed a statistical change 
detection analysis. 

For swamps, while the highest MC is observed in the 2000–2010 
period (10522.9 km2), the highest ARC is noted as 5.26% during 
1990–2000 (Table 5). On the other hand, the lowest ARC for swamps is 
observed as − 2.52% for the 2010–2020 decade. In the last three decades 
(1990–2020), the PC area of swamps increased by 511.74%. Also, the 
swamps show an increasing trend with 2.62% ARC during 1990–2020. 

The marshes class shows the highest change during the 1999–2000 
period with MC and PC equal to 5390.21 Km2 and 79.48%, respectively 
(Table 5). Among the three time periods (1990–2000, 2000–2010, and 
2010–2020) the highest ARC is observed during 1990–2000 (2.54%), 
whereas the lowest (− 1.22%) is noted for the 2000–2010 period. 
Marshes class shows increasing trends during the past three decades 
(1990–2020) with MC, PC, and ARC equal to 7122.07 Km2, 105.01%, 
and 1.04%, respectively. The water class shows maximum MC (3841.77 
Km2) during the 2010–2020 period, with the highest PC (33.22%) 
observed during the 1990–2000 period. From 1990 to 2020, the area of 
water shows decreasing trends with PC and ARC approximately − 6.61% 
and − 0.1%, respectively. To summarize overall, between 1990 and 
2020, marshes and swamps areas increase by 105% and ~511%, 
respectively. For water, a decrease of ~7% in the area is observed. 

Furthermore, to analyze the increasing patterns of wetlands between 
1990 and 2020, we overlay the wetland classes for each year in 

Table 3 
Details of accuracy assessment metrics used to validate the classified maps.  

Name Summary Formula Justification 

PA PA is obtained by dividing 
the total correctly classified 
samples with reference 
sample points. Also called 
Recall. 

PA =
tp

tp + fn Sisodia, Tiwari, and 
Kumar (2014) 

UA UA is obtained by dividing 
the total correctly classified 
samples by the total number 
of classified samples. Also 
called Precision. 

UA =
tp

tp + fp Lyons, Keith, Phinn, 
Mason, and Elith 
(2018) 

OA Shows the proportion of 
total correctly classified 
pixels and represents the 
overall performance of 
classification. 

OA =

tp + tn
tp + tn + fp + fn 

Lyons et al. (2018) 

F1s F1s is the harmonic mean of 
PA and UA and a value near 
1 shows good agreement. 

2×

tp

tp +
1
2
(fp + fn)

Kampffmeyer, 
Salberg, and Jenssen 
(2016) 

K Shows degree of good 
agreements between 
classified pixel and actual 
pixel. 

K =
po − pe

1 − pe 
Rwanga and 
Ndambuki (2017) 

Where tp = true positive, fn = false negative, fp = false positive, tn = true 
negative, po = observed agreement, and pe = chance agreement.  
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ascending year order (Fig. 6). The green area shows the initial base 
wetlands occurrence in 1990 whereas the orange, red, and blue colors 
represent the wetlands spread in 2000, 2010, and 2020, respectively. 
From the visual interpretation of Fig. 6, it is noticeable that the year 
2010 (from 2000 to 2010) contributed the highest increase in the wet-
lands area, whereas a smaller contribution is observed in the recent 
decade (2010–2020). This is also evident from Table 4, that among all 
individual periods (1990, 2000, 2010, and 2020), the cumulative area of 
wetlands (marshes, swamps, and water) is greater in 2010 (36048.19 
Km2) compared with 1990 (16545.39 Km2), 2000 (27992.49 Km2), and 
2020 (30233.06 Km2). For inter-decedal change, wetlands considerably 
decrease between the 2010 to 2020 period with a − 5815.12 Km2 

decrease in area (Table 5). Whereas the highest gain in the area is 
observed in 1990–2000 period with 11447.1 Km2 increase in area. 

Additionally, we also analyze the conversion of different wetlands 
classes into each other (Fig. 7(a)). These conversions are quite visible (i. 
e., most of the Indus Delta region (ID 18) is dominant with marshes and 
the majority of conversion is from water to marshes, Fig. 7(b)). Simi-
larly, in the Miani Hor region (ID 14), the area is dominant with 
marshes, with the majority of conversion from other class to marshes 
class throughout the last 30 years. 

The wetlands inventory map (Fig. 8) shows the wetlands distribution 
in Pakistan for the year 2020. Fig. 8 (a) shows RAMSAR and Fig. 8 (b) 
shows insect maps for each RAMSAR site based on wetlands classifica-
tion data for 2020. Fig. 8(b) further gives a more in-depth view of the 
geographical distribution of swamps and marshes along lakes and 
coastal areas. It is observed that although Deh Akro-II Desert Wetland 
Complex (ID:17) was a recognized RAMSAR site, it shows the least 
distribution of any wetland class. This situation can further be visually 
confirmed and complemented by Fig. 6 represents the geographical 
references on the localized wetland areas which experienced a decline in 
terms of swamps, marshes, and water. Other than that, nearly all the 
RAMSAR sites have experienced a spatially varying increase in the 
wetlands area, and are rich in swamps and marshes proportion. 

4. Discussion 

Using freely available earth observation data, the GEE platform, 
machine-learning techniques, and geo-information modelling, this study 

presents the first-ever national-scale wetlands assessment in Pakistan at 
30 m resolution. This initiative is in line with efforts implemented at 
local and national scales in different countries for effective monitoring 
and management of wetlands (Mahdianpari, Brisco, et al., 2020; Zhang, 
Xu, Li, & Li, 2022). Furthermore, this study also constructed the updated 
wetlands inventory of Pakistan at a national scale, which has great po-
tential to serve the needs of a baseline for future evaluations. For 
instance, this baseline can be used to further evaluate the success/fai-
lures of the implemented policies at different RAMSAR sites in Pakistan. 

For classification, a machine learning algorithm is preferred over 
conventional software-based supervised and unsupervised classification 
techniques because of more accurate and reliable results (Gulácsi & 
Kovács, 2020; Mahdianpari, Brisco, et al., 2020; Mahdianpari, Granger, 
et al., 2020). Among many available ML algorithms, RF is preferred 
because of its competitive results in wetlands classification (Guo et al., 
2017). Previously, many researchers have reported a decline in accuracy 
when they used Landsat data alone for the classification. To comprehend 
this shortcoming, in this study accuracy is enhanced by integrating 
extracted features with Landsat data (Hemati et al., 2021), such as the 
utilization of imagery-based extracted features (i.e., four SIs). Future 
studies might also consider the utilization of much higher-resolution 
products and advanced tools such as LIDAR for comprehensive 
fine-scale mapping of the wetlands (Wu, 2017). This, however, may 
increase the processing and computational costs significantly when 
applied at a national scale, such as the one presented in this study. 

4.1. Fostering geo-information-based monitoring and management of 
wetlands and RAMSAR sites in Pakistan 

Remote sensing-based wetland monitoring systems are essential for 
the sustainable planning and management of these important sites 
(Ballanti, Byrd, Woo, & Ellings, 2017). The RAMSAR convention pri-
oritizes the establishment of national wetlands inventories and infor-
mation systems to address national policies for wetlands conservation in 
view of their multiple services. This establishment is also included as an 
important part of the Convention’s Strategic Plan (https://www.ramsar. 
org/wetland/pakistan). Preparing a national scale inventory is also the 
main recommendation by the Global Wetlands Outlook 2018 report, 
which is the first report of its kind focusing on global wetlands status 

Fig. 4. Wetland classification results for (a) 1990, (b) 2000, (c) 2010, and (d) 2020 are shown along with the area distribution of each class. It is noted that the color 
of the area graph is consistent with the wetland classification scheme. 
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(https://www.global-wetland-outlook.ramsar.org/). In this regard, the 
World-Wide Fund for Nature (WWF) (http://wwf.org.pk) has played a 
huge role in wetlands management and conservation in Pakistan. WWF 
in collaboration with the Ministry of Environment-Pakistan, partially 
funded by the United Nations Development Programme, initiated a 

Pakistan Wetlands Survey Program (PWP) in 2004 (Qamer et al., 2009, 
pp. 307–310). Though this program prioritizes the establishment of a 
national-scale GIS-based wetlands inventory (PWG) to monitor and 
provide references for decision-making in support of wetlands conser-
vation and restoration in the country, no such platform has yet been 

Fig. 5. (a) Shows the results of accuracy assessment metrics (UA, PA, F1s, K and OA) whereas confusion metrics heatmaps are shown for 1990 (b), 2000 (c), 2010 
(d), and 2020 (e). 

Table 4 
Area distribution of different wetland classes (1990–2020). It is noted that Area (%) represents the percentage of wetland class in that year out of total area in a 
particular year.  

Wetland Class 1990 2000 2010 2020 

Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) 

Swamps 1391.19 8.41 4666.92 16.67 15189.82 42.14 8510.43 28.15 
Marshes 6782.23 40.99 12172.44 43.48 9198.26 25.52 13904.3 45.99 
Water 8371.97 50.6 11153.13 39.84 11660.11 32.35 7818.34 25.86 

Total Area 16545.39  27992.49  36048.19  30233.06   
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established and made public. In Pakistan, though there are some 
governmental bodies working on the conservation of wetlands, the 
availability of multi-temporal wetlands inventory data with the 
adequate spatial resolution is still insufficient. Thus, this study is 
particularly important to fill this gap by developing an up-to-date in-
ventory of wetlands in Pakistan using 30 m resolution Landsat time 
series data and ML-based RF algorithm inside GEE (Fig. 8). 

The spatial-temporal assessment results presented here advance our 
understanding regarding the state of wetlands in Pakistan, which has 
important implications to design appropriate measures and action plans 
for the conservation and restoration of wetlands—especially RAMSAR 
sites—in the face of anthropogenic activities (A. A. Khan & Arshad, 
2014; Şimşek & Ödül, 2018). Pakistan has severely been affected due to 
climate change-induced flooding and is particularly vulnerable to global 
warming (Masson-Delmotte, V. et al., 2021). Wetlands are well recog-
nized for their ability to mitigate flood impacts due to their sponge-like 
nature that traps and then slowly releases the surface water, thus 

improving the overall resilience (Hauser et al., 2017; Sajjad, 2021). 
Similarly, wetlands also play an important role to mitigate global 
warming as wetlands sequester carbon from the atmosphere. Addition-
ally, the inventory is also useful to quantify the spatial-temporal dy-
namics of several services provided by wetlands including flood 
protection, carbon storage, and economic incentives—left for future 
studies. 

Though there are no studies at hand to compare our large-scale and 
higher-resolution spatial-temporal assessment of Pakistan’s wetlands, 
the increasing trends in the wetlands of Pakistan as identified in our 
study are in line with some local studies (Ahmad & Erum, 2012; Gilani 
et al., 2021). For example, Gilani (2021) performed a study on only 
mangroves in 5 main regions of Pakistan and found an overall increasing 
pattern in the mangrove area. Their study revealed a ~3% increase in 
each mangrove site (Indus Delta, Sonmiani Khor, Kalmat Khor, and 
Jiwani) in Pakistan (except the Sandspit site, which has only a 0.3% 
increase). Another study from Ahmad and Erum (2012) evaluated 

Table 5 
Area-wise percentage distribution and percent change of different wetland classes (1990–2020).  

Wetland Class 1990–2000 2000–2010 2010–2020 1990–2020 

MC (Km2) PC (%) ARC (%) MC (Km2) PC (%) ARC (%) MC (Km2) PC (%) ARC (%) MC (Km2) PC (%) ARC (%) 

Swamps 3275.73 235.46 5.26 10522.9 225.48 5.13 − 6679.39 − 43.97 − 2.52 7119.23 511.74 2.62 
Marshes 5390.21 79.48 2.54 − 2974.18 − 24.43 − 1.22 4706.04 51.16 1.79 7122.07 105.01 1.04 
Water 2781.16 33.22 1.25 506.98 4.55 0.19 − 3841.77 − 32.95 − 1.74 − 553.63 − 6.61 − 0.1 

Total 11447.1   8055.7   − 5815.12   13687.67    

Fig. 6. Wetlands trends over Pakistan RAMSAR sites for 1990, 2000, 2010, and 2020.  
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Fig. 7. (a) National scale conversion map of different wetlands classes during the 1990 to 2020 period, (b) site-level conversion maps for each respective RAM-
SAR site. 
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wetland change in the Kallar Kahar region of Pakistan using Quick bird 
and Corona satellite imagery with object-based image classification 
techniques for 1972 and 2008. Their study also revealed an increase of 
40% in wetlands (waterbody class). Thus both of these studies justify the 
improving trends of wetlands in different localized regions of Pakistan. 

The improvements seen in wetlands dynamics over the years are 
attributed to different conservation campaigns (started after 2006) by 

national and international Non-governmental Organizations, the 
Pakistan Navy, the Government of Pakistan, and Community-Based 
Organizations (A. A. Khan & Arshad, 2014). As a result, Pakistan was 
added to the Guinness Book of World Records after the plantation of 
~0.85 million mangrove saplings in the Indus delta site within 24 h 
(Gilani et al., 2021). However, the effectiveness of such initiatives re-
quires proper monitoring and management, both spatially and 

Fig. 8. Final wetlands inventory map showing (a) Geographic distribution of national level wetlands in Pakistan updated till 2020 and (b) site level state of wetlands 
highlights over RAMSAR sites as of 2020. 
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temporally, through advanced yet cost-effective means, such as the one 
presented in this study (i.e., through the integration of machine 
learning, remote sensing, and geo-information models). While the wet-
lands showed improvements in our study, in 2010, a loss of − 5815.12 
Km2 is prominent. Previous studies conclude that urbanization and 
agriculture are the major causes of wetlands loss (Mao et al., 2018). In 
Pakistan, this loss may be due to agriculture as indicated in the agri-
cultural report for 2020-21 (available at www.finance.gov.pk). Ac-
cording to this, since 2015, rice production has increased up to 70% in 
the region, where most rice is grown in the flooded soils of Punjab. 

4.2. Limitations and the way forward 

The main hurdle behind the wetlands mapping at the national scale 
was the lack of field samples for the classification of different wetlands 
classes. This was primarily due to a lack of survey data and poor man-
agement of wetlands sites in many parts of the country. Another limi-
tation associated with this study is the unavailability of free high- 
resolution satellite data (i.e., SPOT), which could further enable the 
assessment on a much higher resolution than the one presented here (i. 
e., 30 m). Similarly, future studies might also consider employing object- 
based image analysis (OBIA) for classification, which was not feasible in 
our case due to low computational power and large-scale assessment (i. 
e., national level). Under such circumstances, Landsat archives and 
pixel-based classification techniques are the best options to analyze the 
dynamics of the spatial-temporal wetlands at 30 m resolution on a large 
geographical area. Using this study as a baseline, future studies might 
focus on providing higher-resolution wetlands inventory, OBIA-based 
classification to study wetlands dynamics over regional areas, and 
integrating multispectral and Synthetic Aperture Radar-based in-
struments for studying wetlands. 

It is notable that the maximum confusion is observed between water 
with marshes and marshes with swamps classes (Fig. 5). This issue has 
also been highlighted by many other researchers. They highlighted that 
when a pixel-based approach with medium-resolution satellite data (i.e., 
Landsat data) is being used, accuracy decreases because of similar 
spectral patterns of marshes and other wetland classes (Adam, Mutanga, 
& Rugege, 2010; Amani et al., 2018; Amler, Schmidt, & Menz, 2015; 
Gatebe & King, 2016; Hird et al., 2017). For example (Amani et al., 
2018), compared the spectral reflectance of various wetlands classes 
with different optical instruments. They also observed that fens, bogs, 
marshes, and swamps show similar spectral behaviour. Hence, while 
such observation in our study is in line with the literature, it further calls 
for additional research to mitigate such issues as well as the adoption of 
higher-resolution data. Doing so, however, may result in increased 
computational and financial costs, which may not be feasible for 
developing countries like Pakistan. 

5. Conclusions 

This study evaluates the current state and historical spatial-temporal 
changes in wetlands (swamps, marshes, and water) in Pakistan from 
1990 to 2020 based on an inter-decadal comparison. For this purpose, 
machine learning, cloud-computing platform, and geo-information 
models are employed. The applied methodology is efficient as it uti-
lized a features extraction technique with a conventional machine 
learning RF algorithm. Also, the study performed is cost-effective as the 
GEE cloud computing platform is utilized in this study to classify the 
wetlands at a national scale, and the data used are freely available. In 
general, there has been an increase in most of the wetland areas, with 
some geographical areas facing losses in terms of wetlands. In the 
context of the sustainability of wetlands in Pakistan, the first-of-its-kind 
national-level wetland inventory is established providing long-term 
spatial-temporal state of different wetlands—providing important ref-
erences for conservation and restoration-related management practices. 

The results presented here are of particular importance to act as a 

baseline for future assessments and can help evaluate the effectiveness 
of conservation and restoration policies in Pakistan. Furthermore, the 
wetlands’ distribution data produced on a national scale is of particular 
interest to researchers, modelers, and stakeholders to advance the 
assessment and monitoring of wetlands in Pakistan along with further 
quantification of diverse services provided by these wetlands. Hence, 
this study could potentially act as a baseline to understand the historical 
spatial-temporal dynamics of wetland services as well as simulate future 
predictions in the face of environmental changes (i.e., climate change 
and rapid urbanization, etc.). 

Conclusively, the results from this study can be used to update the 
existing national wetlands database and will provide further insights for 
studying individual RAMSAR sites in Pakistan to quantify their multiple 
services in the context of national resource evaluation and management. 
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