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A B S T R A C T

Monitoring spatial-temporal land use land cover (LULC) patterns and related processes (e.g., land
surface temperature—LST) is essential to sustainable development at local, regional, and na-
tional levels. In this context, the present study leverages cloud-computing-based Google Earth
Engine and geo-information modelling techniques to provide spatial-temporal insights regarding
LULC and LST over the past three decades (1990–2020) in Pakistan—a south Asian country with
∼212 million people. Additionally, using Punjab province (the most populous and developed in
Pakistan) as the study area, we empirically evaluate the association between several LULC types
(i.e., built-up, forests, agriculture, rangeland, barren, and water) and LST. Our results show that
due to the transition from rangeland and agriculture LULC to built-up areas (contributing 38 and
37%, respectively), ∼250% increase is observed in the impervious surface in Punjab during
1990–2020. While the rapid urbanization has resulted in ∼8.5 percent annual increase in built-
up area during the study period, the highest percent change (∼10.5%) occurred during the most
recent decade (i.e., 2010–2020). This increase in built-up areas has led to LST rise with 1.4 °C in-
crease in maximum annual LST in Punjab. In addition, among the evaluated top-20 cities, the
most significant rise in LST is observed by Kasur city followed by Chiniot, Sheikhupura, Sahiwal,
and Lahore—areas known for industrial development in Pakistan. While the results on LULC pro-
vide important references for rational and optimal utilization of land resource via policy implica-
tions, the association between LULC and LST ascertains why it is critical to design sustainable
LULC planning and management practices for climate change mitigation and adaptation.

1. Introduction
Land is considered one of the most crucial resources sustaining human life. Changes in land use and land cover (LULC) in response

to human activities over time result into several multi-scale (e.g., global, regional, and local) environmental consequences such as
changes in surface energy balance and land surface temperature (LST). Land use and land cover are two different terminologies but
are frequently used together. Land use refers to how land is utilized for various socio-economic prospects like agriculture and settle-
ment among many others. On the other hand, land cover highlights biological or physical condition of terrestrial surfaces such as
forests and water bodies etc. (Attri et al., 2015). LULC driving factors such as socio-economic activities, climatic, topographic, etc.,
are among the main reasons behind LULC changes around the world (Talukdar et al., 2020). Land-use change studies have gained im-
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portance in the recent decade due to a rise in environmental issues resulting from anthropogenic activities such as urbanization, de-
forestation, and transportation (X. P. Song et al., 2018). With the availability of freely accessible Landsat data, which host more than
40 years of multispectral satellite data archive, it is becoming much easier to monitor land use shifting trends cost-efficiently and at
regular intervals (Ullah et al., 2019). Land change studies are also important as they address the issues related to Earth's energy bal-
ance and biogeochemical cycles, which directly affect local to regional climate and ecosystem services (Dewan et al., 2021a;
Yohannes et al., 2021).

Land-use change studies play a crucial factor in defining the degradation rate of many environmental factors. Most of the time,
land cover changes affect environmental phenomena such as UHI, surface temperature, biodiversity degradation, habitat loss, and
high probabilities of flood events (Adnan et al., 2020; Hong et al., 2021). Most noticeably, land-use changes affect the microclimate of
an area due to shifting land-use trends, i.e., from vegetative land to paved surfaces and thus increasing the surface temperature due to
more heat absorption on bare surfaces. Thus, cities are at greater risk of facing harsh climates due to the UHI effect induced primarily
due to such changes in land use patterns (Dewan et al., 2021a). The rapid urbanization has also resulted in more shift in rural to urban
migration rate, which demands more basic life necessities such as shelter, food, hospitals, schools for education, etc. Thus, this facili-
tates more urban expansion, and surrounding habitats are severely affected (X. P. Song et al., 2018). Floods are another environmen-
tal factor that has been directly linked with changes in land use. The specific type of land cover determines the rate of water flow. Like
in the case with paved surfaces, the water is not easily leached under the surface, and hence flash floods occur in higher precipitation
receiving regions (Adnan et al., 2020).

Recent studies suggest that more than 40% of the global land area is changed to other land use types, and these changes are signifi-
cantly linked to current and/or predicted environmental problems of the world such as the deterioration of natural systems those are
providing essential services to sustain life on this planet (Borrelli et al., 2020; Magliocca et al., 2015; X.-P. Song et al., 2018; Wang et
al., 2020; Winkler et al., 2021). One of the most visible human activities associated with these changes is urbanization, the most
widely used predictor of LULC change over time and across space (Dilawar et al., 2021). During the past several decades, abrupt pop-
ulation influx and economic development have increased the pace of urbanization. It is predicted that ∼70% of global population (2.5
billion) will be residing in urban regions in 2050 as compared to 55% in 2018, with Asia and Africa sharing 90% of the global popula-
tion (Kundu and Pandey, 2020). This situation would further fasten the pace of urbanization, changing the Earth's terrestrial surface
by large (Talukdar et al., 2020)—resulting in various challenges regarding climate and sustainable resources.

Among many others, one of the key issues related to urbanization is the response/sensitivity of climate indices to built-up areas
(Amanollahi et al., 2016). Mapping LULC changes in the face of rapid urbanization and its associated influence on climatic conditions
(e.g., LST) to comprehend climate related information is one of the foundational approaches for effective and sustainable planning
(Saha et al., 2021). LULC changes from barren lands, agricultural areas, vegetation, and other rangelands to grey areas (impervious
surfaces of built up infrastructure) as a consequence of urbanization influence local climate—increasing the magnitude of LST leading
to the urban heat island (UHI) phenomenon—increase flood susceptibility, ecosystem degradation, and biodiversity loss. In a nut-
shell, LULC changes have serious consequences on natural systems along with compromising the comfortability of urban regions.
Therefore, keeping track of LULC changes provides opportunities to understand its long-term association with LST, which is a strong
climate change predictor (Das and Angadi, 2020). Additionally, assessment and systematic tracking of LULC changes provide crucial
information regarding deforestation, growth in built-up areas, damage assessment, disaster monitoring, spatial planning, and land re-
sources management. In this context, due to their easy to interpret nature, maps are essential tool for urban planners and decision-
makers.

To map and evaluate LULC changes on spatial and temporal scales, remote sensing (RS) data and geographic information systems
(GIS)-based techniques are preferred over conventional methods such as revenue records, statistical records (Abdullah et al., 2019;
Attri et al., 2015; Vinayak et al., 2021). The integration of RS and GIS with other state-of-the-art modelling approaches improves the
evaluation of LULC patterns in space and time (da Cunha et al., 2021). Additionally, RS and GIS-based methods are well known for
their robust implementation, fast data acquisition, lower costs, and more detail and accurate results (Attri et al., 2015; Chachondhia
et al., 2021). The change detection process analyzes multi-spatiotemporal datasets and quantifies LULC changes over time and
space—answering questions related to “what”, “when”, and “where” in the context of long-term sustainability of the area of interest.
Recent advances in this field suggest that the LULC classifications can be significantly improved by different spectral indices (Qu et
al., 2021).

Spectral indices convert multi-spectral remotely sensed data into a single image, allowing a single pixel to be examined temporally
(Xue and Su, 2017). Spectral indices are mostly preferred for analyzing multi-temporal changes due to the fact that they can enhance
desired effect (like vegetation phenology changes) and reduce atmospheric and topographic noise (Hislop et al., 2018). The normal-
ized difference vegetation index (NDVI) (Zhang et al., 2018), the enhanced vegetation index (EVI) (Jarchow et al., 2018), the soil ad-
justed vegetation index (SAVI) (Osgouei and Kaya, 2017), and the normalized difference water index (NDWI) (Özelkan, 2020) are the
prominent spectral indices that are derived from the Landsat multi-spectral data. These spectral indices (NDVI, EVI, SAVI, NDWI) are
preferred over others for their promising results in differentiating various land use types (Abdullah et al., 2019).

In the modern era, cloud computing has emerged since the last decade as a valuable and cost-effective platform for conducting
studies on much larger scales (i.e., regional to global). For geospatial analyses, the Google Earth Engine (GEE) is one of the most dom-
inant cloud computing platforms, which provides access to a petabyte of data catalogues through an interactive web-based applica-
tion programming interface (Gorelick et al., 2017). With its flexible programming interface (JavaScript/Python), users can either use
pre-defined models/algorithms or use their own for various computations. GEE data catalogue contains ∼40 years of data (i.e., Land-
sat missions archives), opening doors for efficient time series analysis on a large geographical scale. Through its high-performance
dedicated computing infrastructure, many computations that were previously achieved in hours or days are now completed in min-
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utes or seconds (Kumar and Mutanga, 2018). In terms of land use classification, supervised and unsupervised classification are mostly
used but in recent years Machine Learning (ML)-based classification is predominant. ML is a type of artificial intelligence (AI) and is
based on the idea of “learning from data” (Jung et al., 2021). ML-based classifications are type of supervised classification that require
training data. GEE provides many pre-defined ML-based algorithms (like Random Forest-RF, Support Vector Machines-SVM, Classifi-
cation and Regression Tree-CART, etc.) that are set on defaults parameters but can be fine-tuned by users if needed (Gorelick et al.,
2017). Among these several options, ML-based RF classifier is most widely used and has an upper hand due to its proven better and
reliable results in exiting land use studies (Gumma et al., 2020; Shelestov et al., 2017).

Pakistan, a country in South Asia with ∼212 million population (5th most populous), is particularly vulnerable to the impacts of
climate change as the country is among the top-10 countries to be affected by global warming (Sajjad, 2021). This situation necessi-
tates the comprehension of LULC changes and their association with LST to provide valuable references for effective planning in sup-
port of sustainable urbanization and climate adaptation. Previously, some studies have evaluated LULC changes and its association
with climatic indices (i.e., LST) in some limited geographical areas of Pakistan. Among them, some studies (Amir et al., 2019; Dilawar
et al., 2021; Hassan et al., 2016; Hussain and Karuppannan, 2021; Hussain et al., 2019) highlighted spatial-temporal dynamics of
LULC changes but were limited in their geographical scale (i.e., focused on small and segmented areas comprising either only a few
districts or a specific agro-ecological region). Also, some studies (Arshad et al., 2020; Cheema et al., 2020; Khana et al., 2020) used
coarser-resolution datasets for LULC spatial-temporal evaluation, which do not provide promising results at local to regional scales
(Afrin et al., 2019). Further, these existing studies do not provide up-to-date comprehensive literature on high-resolution LULC tem-
poral changes. It is also important to note that there is no archive currently publicly available in Pakistan for higher resolution up-to-
date long-term LULC changes. This lack of information hinders planning of natural resources, climate-related decision-making, urban
planning, ecology monitoring, and act as a barrier for solution to numerous environmental challenges. Hence, there exists a signifi-
cant knowledge gap to conduct comprehensive large-scale and spatially continuous LULC change assessment and its connection with
climate indices, if any, in Pakistan at a higher resolution.

Hence, to overcome this gap, this study utilizes cloud computational capabilities of GEE, RF algorithm, tier-1 data of Landsat mis-
sions (Landsat-5 and Landsat-8) and spectral indices (NDVI, EVI, NDWI, SAVI) to provide higher resolution and long-term LULC and
to evaluate the association between LST and several LULC types at district level in Punjab, Pakistan—the most populous and urban-
ized province in the country (sharing ∼55% of total population). For this purpose, the satellite observation data between 1990 and
2020 are retrieved and processed systematically (see Section 2 for details). The results from this study will provide comprehensive in-
formation on multi-dimensional spatial-temporal LULC changes at provincial as well as district levels. This district-level information
is particularly important as district is the administrative unit in Pakistan at which most of the planning and decision-making takes
place. The up-to-date higher resolution LULC information provided through this study would be useful for several other computa-
tional purposes, such as multi-scaler climate modelling, LULC impact assessment on several phenomenon including ecosystem degra-
dation and service change, hazard exposure/risk analysis, and urbanization as well as bio-diversity related issues. Additionally, while
the LULC change assessment will progressively support sustainable urbanization in Pakistan, the results will also provide important
references for resource management and climate adaptation in a more effective way, which might not be possible otherwise.

2. Methodology

2.1. Study area
As aforementioned, this study is primarily focused on Punjab province in Pakistan due to its huge population, high economic ac-

tivity, and rapid urbanization process over the past few decades (Fig. 1). The study area extends from 27°N to 75°E and is 168.2 m
above sea level. Punjab province has 9 divisions (administrative unit below province) which further consists of 36 total districts (ad-
ministrative unit used in this study). Punjab province has an area of more than 205, 344 Km2 having five major rivers (Jhelum,
Chenab, Ravi, Sutlej, and Beas), which are further divided into ∼ 3000 smaller channels (Imran et al., 2019). As a result, Punjab has a
strong irrigation system which supports its agriculture production. (Siddiqui and Javid, 2019). About 55% of national income, 51%
share of national exports, and ∼70% of annual grain production in Pakistan is contributed by Punjab.1 Six out of top ten cities in terms
of gross domestic product (GDP) in Pakistan belong to Punjab making it an important economic hub. Furthermore, Punjab is home to
20 industrial zones attracting people from all other regions of the country (more information at http://www.psic.gop.pk/). This in-
creasing population is also a major factor of rapid urbanization as the province has to cope with the increasing demand for land to ac-
commodate the population influx. This urbanization-led infrastructural development significantly contributes towards LULC changes
resulting in transition of other LULC types to built-up areas, which ultimately influences local climatic conditions such as disparities
in LST. During this process, uninformed planning and expansion of built-up areas, particularly in major cities, have created many is-
sues related to urbanization, ecosystem degradation, and environmental problems (Chen et al., 2019; Han, 2020; Sarkodie et al.,
2020). To tackle such issues and to aid sustainable urban planning, it is integral to evaluate the spatio-temporal patterns and trends of
different land-use types in Punjab and its associations with LST, if any.

2.2. Data acquisition and preparation
This study is conducted in several steps including data acquisition, LULC classification, change assessment, LST computation and

evaluation, and identifying the association between different LULC types and LST. In general, the workflow is based on two major
steps. The first step deals with data acquisition and employment of cloud-computing platform (Google Earth Engine) to identify sev-

1 https://www.usaid.gov/news-information/fact-sheets/provincial-fact-sheet-punjab.

http://www.psic.gop.pk/
https://www.usaid.gov/news-information/fact-sheets/provincial-fact-sheet-punjab
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Fig. 1. Study area map.

eral LULC classes and retrieval of LST from the earth observation data for the entire study area. The second step consists of utilizing
several geo-information modelling techniques to explore the spatial-temporal dynamics in LULC and LST along with evaluating the
association between the both, if any. The overall workflow of the methodology adopted in this study is shown in Fig. 2. The data
preparation stage starts with filtering the Landsat-5 Thematic Mapper (TM) tier-1 Surface Reflectance (SR) and Landsat-8 Operational
Land Imager (OLI), and the Thermal Infrared Sensor (TIRS) tier-1 SR data from the GEE data catalogues in the form of image collec-
tion.

As LULC change is a slow process, we divide the analysis in four temporal periods (i.e., years 1990, 2000, 2010, and 2020. For the
years 1990, 2000, and 2010 Landsat-5 TM tier-1 SR data was used, whereas for the year 2020 Landsat-8 OLI tier-1 SR data was used.
Landsat-7 data was available for the year 2000 and 2010, but it was avoided because of scan-line error in it after 2003 (Yin et al.,
2017). Except for the satellite observation-based data, we also use the vector data for provincial and district level boundaries as well
as some network data (i.e., road networks). Details on all the data used in this study, their acquisition dates, and their source informa-
tion are provided in Table 1. It is noted that atmospheric corrections were performed to avoid atmospheric disturbance like haze by
identifying the darkest pixel value in each band and then by subtracting that value from each pixel (Chavez, 1988).

The Landsat path/row coverage scenes over Punjab are presented in Fig. 3. For the best pixel coverage and minimum cloud cover,
average pixel values of first eight months from each year (i.e., 1990, 2000, 2010, and 2020) are filtered out and then clipped using the
vector shapefile of Punjab province. The NDVI, NDBI, EVI, SAVI, and mNDWI are later calculated using the resultant clipped images
and are added as separate bands. The details on these spectral indices are given in Table 2.

2.3. Training and LULC classification
Training and validation samples are collected using the Google Earth images and auxiliary data. Auxiliary data include Copernicus

Global Land Cover Layer (CGLS-100), Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover data, Very High Resolu-
tion (VHR) Google Earth Images, and spectral indices including NDVI, NDBI, EVI, SAVI, and NDWI derived from Landsat-5 and Land-
sat-8 tier-1 SR data. Approximately 500–1500 training point samples are taken for each class using a stratified sampling approach.
They are later split into a 70/30 ratio for training and validation, respectively. The 70% (∼3500 points for each class) training sam-
ples are fed to RF classifier for supervised ML-based classification. In contrast, the remaining 30% (∼1500) training samples are kept
separate—for later use in validation process. For validation, those 30% samples are used to generate confusion matrix table of resul-
tant maps. Confusion matrix also known as error matrix is a table that checks performance of classification model. Producer Accuracy
(PA), User Accuracy (UA), Overall Accuracy (OA), F1-Score, and Kappa coefficient (K) are then derived from initial confusion matrix
(AlBeladi and Muqaibel, 2018; Vinayak et al., 2021). The details of accuracy assessment techniques are given in Supplementary Table
S1.
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Fig. 2. Schematic of overall workflow to conduct this study.

Table 1
Detail on different datasets used in this study along with their sources.

Datasets Resolution Image
Acquisition
Date

Bands Source

SRTM DEM 30 m 2007 [‘elevation’] https://lpdaac.usgs.gov/products/srtmgl1v003
Landsat-5 TM

SR, TOA, Tier-1
30 m 1) Jan–Aug

1990
2) Jan–Aug
2000
3) Jan–Aug
2010

[1,2,3,4,5,7] https://earthexplorer.usgs.gov

Landsat-8 OLI/TIRS
SR, TOA, Tier-1

30 m Jan–Aug
2020

[1,2,3,4,5,6,7] https://earthexplorer.usgs.gov

Vector data on Punjab province and
district boundaries (shapefiles)

2019 https://data.humdata.org/dataset/pakistan-administrative-level-0-1-
2-and-3-boundary-polygons-lines-and-central-places

Punjab Roads 2020 https://data.humdata.org/dataset/hotosm_pak_roads

The RF classifier is used for the classification of different land use classes for each year (i.e., 1990, 2000, 2010, and 2020). Based
on the existing literature, this study uses six different land use classes and their description is provided in Table 3. After tuning the RF
classifier, optimal number of decision trees (n tree) are set to 120, which yields maximum accuracy. The obtained accuracies as de-
scribed in Table 3 are used to test the performance of the RF classifier. Area for each class are calculated inside GEE using pixel-based
approach (Xiong et al., 2017). The classified maps, confusion matrix table, and area estimation table are then exported locally from
GEE. To analyze multi-year change in the area of each class, change detection is performed using QGIS software (available at https://
qgis.org/en/site/), which is an open-source GIS software (Al-Rubkhi et al., 2017). Furthermore, Python 3 libraries such as NumPy,
Pandas, Matplotlib, and Seaborn are used for statistical analyses and visualization.

https://lpdaac.usgs.gov/products/srtmgl1v003
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://data.humdata.org/dataset/pakistan-administrative-level-0-1-2-and-3-boundary-polygons-lines-and-central-places
https://data.humdata.org/dataset/pakistan-administrative-level-0-1-2-and-3-boundary-polygons-lines-and-central-places
https://data.humdata.org/dataset/hotosm_pak_roads
https://qgis.org/en/site/
https://qgis.org/en/site/


Remote Sensing Applications: Society and Environment 25 (2022) 100665

6

M. Waleed and M. Sajjad

Fig. 3. Landsat Path/Row cover area. The base map presents the population density, and green boxes are the top-20 cities in the study area based on population. The
“P" and “R" in the labels represent Path and Row of the Landsat satellite, respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Table 2
Description on different spectral indices used in this study.

Index Equation Justification

EVI Huete et al. (2002)
mNDWI Xu (2006)
NDBI Zha et al. (2003)
NDVI Rouse et al. (1974)
SAVI Huete (1988)

Note: NIR = Near InfraRed band, R = Red band, G = Green band, and SWIR = Shortwave InfraRed band of Landsat.

2.4. Evaluating LULC change
In general, change detection is the study of variations in state of an object with respect to change in a given time frame. In land use

studies, change detection is of great importance as it not only shows statistics of gradual change over years but also visualizes spatial
patterns among different land use classes over time. Among Pre- and Post-classifications techniques which are previously used for
change analysis, post-Classification change detection is the most dominant and is widely used for most of land use studies (Abdullah
et al., 2019).

Post-classification change analysis involves pixel-based comparison of classified maps of different times. This technique not only
minimizes sensor, atmospheric, and environmental affect but also provides more in-depth view of land use transitions into various
land use classes. Apart from that, this technique also evaluates change rates and magnitude of change that are important for individ-
ual class analysis. Previously many studies (Abdullah et al., 2019; Alawamy et al., 2020; Islam et al., 2018; Saputra and Lee, 2019;
Zurqani et al., 2018) used post-classification change detection technique for evaluating land use spatio-temporal studies and acquired
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Table 3
Land use types and their description.

Code Land use
class

Description

1 Built-up Residential, commercial and services, industrial, transportation, roads, mixed urban, and other urban areas.
2 Forest Dry tropical deciduous, Tropical wet evergreen, Alpine and Littoral forests
3 Barren Exposed soils, construction sites, Deserts, little or no vegetation
4 Agriculture Cultivated land, crop fields, fallow lands, and vegetable fields
5 Rangeland Natural sparse vegetation, grasslands, shrublands, woodlands, tallgrass and shortgrass prairies, desert grasslands, savannas, chaparrals,

steppes, and tundra
6 Water Wetlands, inland water bodies, low-lying areas, marshy land, rills and gully, swamps, river networks, canals, active hydrological features

high accuracy. Therefore, post-classification comparison technique was used in this study for evaluating changes in LULC for each
time period (i.e., 1990, 2000, 2010, and 2020). LULC classified maps are prepared for respective years and are then further analyzed
in a workflow consisting of QGIS-based Semi-Automatic Classifier Plugin, Python modules (Pandas, Matplotlib, Seaborn), and Mi-
crosoft Excel. Resulting change maps and metrices are obtained and visualized to communicate the percent changes, magnitude of
changes, and class transition. The details of change detecting algorithms used in this study are provided in Supplementary Table S2.

2.5. Retrieving land surface temperature (LST)
The Top of atmospheric (TOA) Tier-1 data of Landsat-5 and 8 were filtered for summer months (from May till August) and mean of

all values was taken individually for each year (Li et al., 2020). The resulting images for each year were then clipped with our study
area shapefile. The resultant TOA images of Landsat-5 (i.e., 1990, 2000, and 2010) and Landsat-8 (2020) were then used to derive
LST. Landsat-5 TM has one thermal band (band 6) whereas Landsat 8 OLI/TIRS has two thermal bands (band 10 and 11). To estimate
LST, band 6 and band 10 of TM and TIRS, respectively, are used, whereas band 11 of TIRS is avoided because of the observed signifi-
cant calibration issues as highlighted by the United States Geological Survey (Avdan and Jovanovska, 2016).

2.5.1. Converting digital numbers (DN) to spectral radiance (Lλ)
Thermal bands are used to convert Digital Numbers (DN) into spectral radiance (Lλ) using equations (1) and (2). The resulting top

of atmospheric radiance (Lλ) is in watts/(m2 × ster × μm) shown in equation (1).

Eq. 1

where LMAX = maximum spectral radiances (15.600 for TM), LMIN = minimum spectral radiances (1.238 for TM),
QCALMAX = maximum Digital Number (DN) value (255), QCALMIN = minimum Digital Number (DN) value (1), QCAL = Digital
Number value of band 6.

The values of LMAX, LMIN, QCALMAX, and QCALMIN are obtained from the metadata file attached with each Landsat images. For
Landsat 8 OLI thermal band, top of atmospheric radiance (Lλ) is calculated using the following equation (2) provided by (Rozenstein
et al., 2014);

Eq. 2

where ML = multiplicative rescaling factor for specific band (0.0003342), QCAL = digital numbers of band 10, and AL = addi-
tive rescaling factor for specific band (0.1).

2.5.2. Converting spectral radiance (Lλ) to at-satellite brightness temperature
The TOA brightness temperature was calculated from spectral radiance using following equation (3):

Eq. 3

where TB = at-satellite brightness temperature in Kelvin (K), Lλ = spectral radiance, K1 and K2 = calibrated constants depending
on sensor. For Landsat-5 TM, the values of K1 and K2 are 607.76 and 1260.56, respectively. Whereas, for Landsat-8 OLI, the values of
K1 and K2 are 774.89 and 1321.08, respectively (Ihlen, 2019).

2.6. Evaluating land surface temperature (LST) and its association with LULC
The at-satellite brightness temperature obtained from equation (3) also known as black body temperature, needs further correc-

tions (spectral emissivity (ε)) to evaluate LST. Algorithm proposed by (Artis and Carnahan, 1982) is used to calculated emissivity cor-
rected LST. The emissivity correction primarily depends on the category of land use and it is evaluated using Normalized Difference
Vegetation Index (NDVI) per pixel values. The following equation (4) is used to evaluated emissivity corrected LST:
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Eq. 4

where ST = land surface temperature in (°C), TB = at-satellite brightness temperature (K), λ = wavelength of emitted radiance
(11.5 μm), ρ = 1.438 × 10−2 mK, ε = emissivity (ranges from 0.97 to 0.99).

Emissivity can be calculated by using equation (5) which is:

Eq. 5

where Pv = proportion of vegetation.
The proportion of vegetation Pv can be calculated using following equation (6);

Eq. 6

where NDVI, NDVImin, and NDVImax are per pixel value of NDVI, minimum NDVI, and maximum NDVI values, respectively.
It is noted that in this study, the values of Emissivity (ε) and Proportion of vegetation (Pv) are calculated by following the method-

ology adopted in (H. Imran et al., 2021).
To evaluate the association between LST and LULC types, many researchers have used the regression techniques (Dilawar et al.,

2021; Saleem et al., 2020). Given the fact that both LST and LULC are spatially dynamic, it is better to use the regression technique
that accounts for the spatial variations in the variables under consideration. Furthermore, while most of the linear approaches such as
the ordinary least squares regression are global in nature, they are inadequate to comprehend the local spatial associations among the
dependent and explanatory variables. Considering this, we use the geographically weighted regression (GWR) technique in this study
to evaluate the relationship between several LULC types and LST, if any (Karimi et al., 2017). The general form of GWR for a given
area of interest is as follows:

Eq. 7

where Y represents dependent variable (LST in this case) and β0,β1,β2,…,βn are the slopes for each explanatory variable x1,x2,…,xn.
The explanatory variables used in this equation are the LULC types obtained from the classification of earth observations.

3. Results

3.1. Spatial-temporal evaluation of LULC (1990–2020)
Six primary classes including built-up, forest, barren, vegetation, rangeland, and water have been evaluated in Punjab to represent

the dominant LULC. The overall distribution of all the LULC classes in Punjab is presented in Fig. 4. On a broader level the study area
is dominantly covered by vegetation, barren areas, and rangeland types of LULC. While most of the vegetation is concentrated in the
central to the eastern region of the study area (the regions in the floodplains of different rivers), the western regions primarily consist
of barren and rangeland LULC throughout the study period (1990–2020). Three larger regions/zones are dominant in Punjab includ-
ing vegetative area (central and eastern Punjab), rangeland (northwestern areas), and barren (southwestern and eastern borders). No-
tably, the visibility of intensifying built-up land (in red) can be easily observed during the study period presenting the growth of built-
up land in Punjab between 1990 and 2020. The results show that the built-up area in Punjab is increased from 0.67 in 1990 to 2.35
million hectare (ha) in 2020. While the forest cover has been somehow steady during this period, there has been an increase in agri-
cultural cover in 2020 as compared to 1990. Overall, Punjab has experienced a shrinkage in rangeland cover over the past three
decades. These results on spatial-temporal LULC have important implications for land-use policy and natural resource management.
Additionally, this relatively higher resolution data are particularly useful for several other purposes such as integration into climate
or hydrological modelling. More detailed outcomes on spatial-temporal dynamics in the LULC are discussed in Section 3.3.

3.2. Evaluating the accuracy of LULC classification
One of the primary concerns of LULC classification is related to the reliability and accuracy of results. Given the fact that all the

LULC estimation and classification techniques have some errors based on the method employed or the way of image acquisition, com-
puting classification accuracies through different parameters become essential for reliability of the results (Ogunjobi et al., 2018).
Fig. 5 represents the variations in the accuracy for each class and time step used in this study. It is evident that all the computed matri-
ces (i.e., UA, PA, F1-score, OA, and K) for all the LULC types are approximately higher than 90%. These results show that the pro-
duced classification is reliable and can be used for further analyses. The minimum overall accuracy is estimated for the year 1990
(OA = 94.68) and the maximum is observed for 2020 (OA = 96.67). These results show that the classification presented in our study
is much higher than the one reported by Saleem et al., (2020) (maximum reported OA value 88%), who conducted the analysis on
three districts in Punjab recently. The base confusion matrices (also known as error matrix) for each year to compute all the typical
aforementioned indices (i.e., UA, PA, F1-score, OA, and K) are provided in Figures 4b-4d—for 1990, 2000, 2010, and 2020, respec-
tively—to represent the possible reasons for lower scores of certain accuracy indices along with helping readers preventing the confu-
sion.
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Fig. 4. Distribution of different LULC classes in the study area for the years 1990, 2000, 2010, and 2020. The bar chart represents the total area (ha) of each LULC class
for different time periods between 1990 and 2020. Different colors in bar chart are consistent with the classification scheme presented in the map. It is noted that areas
are calculated based on UTM zone 43 projected coordinate system in ArcGIS Pro software. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)

3.3. Multi-scale change detection in LULC (1990–2020)
The most dominant LULC types in 1990 are agriculture and rangeland (sharing 44% and 32% of total area, respectively) followed

by barren land, forest, and built-up (Fig. 6). The largest reduction in rangeland is observed between the years 2000–2010, when the
share of this LULC reduced from 30% in 2000 to 23% in 2010. It is observed that the built-up area has increased from ∼3 of total area
in Punjab to ∼11 between 1990 and 2020 (Fig. 6a). Among top-20 cities according to population (Pakistan Population Census 2017),
most of the regions experienced larger expansion during the earlier decade of the study period (i.e., Lahore, Faisalabad, Gujranwala,
Multan, Jhang, Chiniot, and so on). This might be due to the fact that these areas are older cities. On the other hand, areas such as
Rawalpindi, Rahim Yar Khan, Dera Ghazi Khan, Wah Cantonment, and Kamoke experienced larger built-up increase in recent two
decades (i.e., between 2000 and 2020). This situation highlights the recent rapid urbanization in Punjab and increase in impervious
surface areas.

The rapid urbanization process in Pakistan led to ∼250% increase in built-up areas in Punjab over the past three decades (Table
4). Overall, the average percent change in built-up area in Punjab is observed at a rate of 8.32 percent per year during 1990–2020
with the highest percent change (10.43 percent per year) experienced in recent decade (i.e., between 2010 and 2020). Built-up area is
followed by rangeland and water bodies in terms of percent change during past three decades (values 30.06 and 30.61, respectively).
Among the forest, barren land, and agriculture LULC classes, barren land experienced loss of about 9.56%, whereas agriculture and
forest show a gain (10.27% and 16.14%, respectively) during the study period.

Given the large percent change (∼250%) in built-up area and its particular association with LST (Dilawar et al., 2021), we further
evaluate the transition of different LULC classes to built-up area. The results on this assessment are presented in Fig. 7. It is observed
that the largest contribution to built-up area between 1990 and 2020 is made by rangelands (38%) followed by agriculture land
(37%). The transition of rangeland to built-up is observed mostly in western Punjab whereas, the agricultural transition is evident in
the eastern Punjab. If this current trend of land transition is not sustainably managed, there is a high likelihood that along with facing
the UHI phenomenon in Punjab, the agricultural sector might also experience several challenges such as land use conflicts or crop
yield shrinkage.

3.4. Spatial-temporal assessment of LST and its association with LULC
The results from the LST estimation using earth observation data present interesting insights from a spatial-temporal perspective.

On the basis of spatial distribution of LST, the southeastern regions in the study area observed the highest LST throughout the study
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Fig. 5. Accuracy assessment of LULC classification. (a) shows percentage of user accuracy (UA), producer accuracy (PA), F1-score (F1S), overall accuracy (OA) and
kappa coefficient (K). The dotted horizontal line in grey is for reference to 90% value. Heatmaps in (b)–(d) represent the confusion matrix on the relationship between
actual and predicted pixels for 1990–2020, respectively.

period (190–2020) as presented by red shades in Fig. 8. This seems reasonable given that this highest LST region is mostly desert. Sim-
ilarly, the region of Thar desert (central western Punjab—yellow shade in Fig. 8) and south western regions are also among the re-
gions of comparatively higher LST. In general, there is an increasing spatial pattern in LST in the study area. At the provincial level,
the highest max annual LST during the studied periods is observed in 2010 (48.18 °C). On the other hand, the minimum annual LST is
observed for the year 2000 (19.88 °C). The largest spatial variation on the province scale is observed in 2010, followed by 2000,
2020, and 1990 (range values 26.74, 25.82, 24.25, and 23.32 °C, respectively). In the long-term, it is observed that the maximum ob-
served LST has changed by 1.4 °C in Punjab during 1990–2020.

In addition to evaluating the LST at provincial scale and to provide preliminary references for local actions, we also analyze top-20
cities in terms of population according to the latest population census available at https://www.pbs.gov.pk/. The localized spatial
heterogeneities of LST in these cities during the past three decades (1990–2020) are presented in the sub-sets of Fig. 8. The cities are
arranged in descending population order (i.e., Lahore with the highest population and Hafizabad with the lowest among all). The spa-
tial-temporal trends and patterns are evident in almost all of the cities, with relatively higher LST concentrated in central regions for
most of the cities.

For 1990, the highest mean LST is observed for Bahawalpur (34.5 °C) followed by Dera Ghazi Khan and Rahim Yar khan (Fig. 9a)
—34 °C each. While the mean minimum LST is experienced by Gujrat, the highest maximum LST in 1990 is observed by Bahawalpur.
The largest standard deviation and range is identified for Gujrat city, showing a large spatial disparity in the minimum and maximum
LST throughout the city. Similarly, Bahawalpur also experienced the highest mean LST in 2000 (36 °C), showing an increase of 2 °C
during 1990–2000. Rahim Yar Khan, Bahawalpur, and Sargodha are among the notable cities in 2010 with mean LST values of

https://www.pbs.gov.pk/
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Fig. 6. Spatial-temporal dynamics of LULC in Punjab during 1990–2020. (a) share of different LULC types throughout the study period. (b) built-up area sprawl be-
tween 1990 and 2020. The inset maps (circles) show the top-20 countries in Punjab based on population (population data source: Pakistan Population Census 2017
available at www.pbs.gov.pk/). The arrangement of insets is according to high-low population (i.e., Lahore has high population and Hafizabad has relatively low.
The maps are produced using ArcGIS Pro. Software.

Table 4
LULC percentage in Punjab as compared to total area and its change throughout the study period. The positive and negative values represent gain and loss in a cer-
tain LULC class, respectively.

LULC Class % Area
2020

% Area
2010

% Area
2000

% Area
1990

1990–2000 2000–2010 2010–2020 1990–2020

Percentage
Change (%)

Average
Change

Percentage
Change (%)

Average
Change

Percentage
Change (%)

Average
Change

Percentage
Change (%)

Average
Change

Built-up 11.43 5.59 6.11 3.27 86.77 8.68 −8.39 −0.84 104.27 10.43 249.51 8.32
Forest 4.72 5.09 3.49 4.06 −13.96 −1.40 45.71 4.57 −7.36 −0.74 16.14 0.54
Barren 13.85 15.58 15.45 15.31 0.94 0.09 0.84 0.08 −11.15 −1.11 −9.56 −0.32
Agriculture 48.72 49.56 44.19 44.18 0.02 0.00 12.16 1.22 −1.70 −0.17 10.27 0.34
Rangeland 20.27 23.35 29.82 31.7 −5.94 −0.59 −21.68 −2.17 −13.21 −1.32 −36.06 −1.20
Water 1.02 0.82 0.94 1.47 −36.05 −3.61 −12.77 −1.28 24.39 2.44 −30.61 −1.02

38.5 °C, 37 °C, and 36.5 °C, respectively. In 2020, the mean, minimum, and maximum annual LST for Bahawalpur is also amongst the
highest as compared to other cities. On the contrary, Gujrat is along among the most noticeable cities due to its relatively largest local
heterogeneity during 1990–2020, as reflected by the range and standard deviation values for all the periods (Fig. 9a–d).

To provide statistical evidence on the differences between the mean LST observed in different cities during 1990–2020, we further
performed the analysis of variance (ANOVA) using different periods as different groups (four groups such as 1990, 2000, 2010, and

http://www.pbs.gov.pk/
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Fig. 7. LULC transition of different types to built-up areas between 1990 and 2020. (a) shows the percent contribution of each class to built-up areas, (b) represents the
spatial references to what is changed to built-up between 1990 and 2020. The inset maps show the LULC transition of top-5 cities in Punjab according to population
(population data source: Pakistan Population Census 2017 available at www.pbs.gov.pk/). The insets are arranged in higher to lower population order from top to bot-
tom. The maps are produced using ArcGIS Pro. Software.

2020). The results from ANOVA show statistically significant differences among the groups at p < .05. The resultant values of
p = .0004 and f-ratio = 6.88 ascertain that the observed mean LST during different periods is statistically different. In addition, the
pairwise comparisons based on the Tukey's HSD (Honestly Significant Difference) process show the significant differences among
1990–2000 (∼86% confidence), 1990–2010 (99.9% confidence), 1990–2020 (91% confidence), 2000–2010 (92% confidence), and
2000–2020 (86% confidence) pairs. Whereas, the difference in 2010–2020 (the most recent decade) is insignificant (p = .99).

4. Discussion
It is a well-established fact that urbanization induced LULC changes are significantly associated with several challenges—with

higher intensities in developing countries. On the one hand, many problems including but not limited to ecosystem degradation,
threats to biodiversity, vegetation loss, and increase in impervious surfaces are linked to rapid urbanization (Qi et al., 2013). On the
other hand, this LULC change is influencing climate at global, regional, and local scales—resulting in increased discomfort in urban
areas (Kalnay and Cai, 2003). Moreover, rapid urbanization is increasing exposure to several hazards particularly floods and storm
surges around the world (Hussein et al., 2020; Rahman et al., 2021; Zope et al., 2016). Hence, evaluating LULC changes through ad-
vance and integrated approaches such as provided in this study is of particular importance in terms of urban sustainable develop-
ment. This assessment on LULC changes conducted across three decades (1990–2020) provides comprehensive insights related to
“what” has changed and “where” in the study area—as presented in Figs. 4 and 6. Even though the rates of change are different, the
increasing trends of built-up area found in our study (Table 4) are consistent with previous studies in Pakistan and beyond (Hu et al.,
2019; H. M. Imran et al., 2021; Rosina et al., 2020; Saleem et al., 2020). Though no comparable studies are at hand for the observed
variations in LULC due to higher resolution and large-scale assessment provided in this study, Hussain and Karuppannan (2021)
noted an increase in the built-up areas in Khanewal (∼201 percent change during 1980–2020)—consistent with our finding. Simi-
larly, Shah et al. (2021) noted in increase in Islamabad's built-up area (∼5.2% during 1979–2019), consistent with our evaluation.
This increase in Punjab's built-up areas could be attributed to rapid urbanization process to accommodate the population influx the
study area has witnessed in the past decades (i.e., ∼50% increase during 1998–2017)—as reflected in the recent national census
(Statistics, 2017).

Sustainable urban development prerequisites stable vegetative areas, which have the potential to reduce as well as maintain the
thermal intensity in cities—particularly the denser built-up areas (Pramanik and Punia, 2020). Similarly, green areas (vegetation
cover) in cities generate a cooling effect resulting into eco-environmental sustainability, and their absence potentially compromise
comfort levels in urban areas (Amiri et al., 2009; Dewan et al., 2021b; Gunawardena et al., 2017). While rapid LULC changes could be
associated with temporal undulations in UHI effect (Quan et al., 2016), the increased built-up area resulting in larger impermeable
surfaces can contribute to reduced evapotranspiration (Wang et al., 2016) —having local and regional consequences. From this point

http://www.pbs.gov.pk/
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Fig. 8. Spatial-temporal dynamics of LST in Punjab during 1990–2020. The inset maps show the local distribution of LST in top-20 cities in Punjab according to popu-
lation. Please see Fig. 3 for the exact locations of these cities. The values of LST are presented using two standard deviations where red and blue shades show high and
low LST, respectively. The maps are produced using ArcGIS Pro. Software. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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Fig. 9. Heat-charts of LST in top-20 cities in Punjab based on population. (a)–(d) represent summary statistics of LST for different time periods (i.e., 1990, 2000,
2010, and 2020, respectively), where red shades show the higher values and blue shades represent smaller LST values. (e) indicates the change in LST in top-20 cities
during 1990–2020. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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of view, the observed LULC modifications during the past three decades and an increase in impervious surface across the study area at
the cost of vegetation cover (Fig. 7) should be a matter of serious concern for authorities. This transition of vegetation land cover to
built-up is also consistent with (Hussain and Karuppannan, 2021; Majeed et al., 2021), and in contrast with Shah et al. (2021) who
noted the higher contribution of barren land to built-up area in Islamabad during 1979–2019. This contradiction might be due to the
different in scale (i.e., city scale in their study vs province level evaluation in this study).

As the dynamic geographic nature of LST, due to increase in impervious surface, in cities lead to UHI effect, it is essential to have
insights regarding the spatial distribution of LST on local levels (i.e., cities) in order to design effective adaptation strategies
(Simwanda et al., 2019). Urban areas of the developing world tend to have larger populations while being poorly equipped with the
resources to cope with the consequences of urbanization process (Dewan et al., 2021a; Moretti, 2014). As a result, the rising tempera-
ture in cities (as reflected in Figs. 8 and 9) could have negative impacts on the livelihoods and health of millions (Huq, 2001). Hence,
developing possible adaptation measures necessitates evaluation of spatial-temporal patterns and trends of urban warming (Ren et
al., 2011), which is currently lacking for the cities in developing countries such as Pakistan and Bangladesh. In this context, the re-
sults from our study (Figs. 8 and 9) provide important preliminary references. For instance, the change in LST during 1990–2020 is
higher in urbanizing mid-level cities such as Kasur, Chiniot, and Sheikhupura as compared with highly urbanized cities such as La-
hore and Faisalabad. Hence, these urbanizing regions should not be overshadowed by the urbanized cities and should be provided
with the due attention to take mitigation measures.

4.1. Fostering LULC and LST association-based informed planning
As LULC changes are significant in influencing regional climatic conditions, it is desirable to evaluate the association between

LULC and LST for informed planning of urban areas. Hence, in order to evaluate the association between LULC and LST, we choose
the most recent period (i.e., 2020) and aggregate the mean annual LST in 36 district-level boundaries in Punjab. Similarly, the LULC
information is also aggregated in these district boundaries. To model the relationships, we aggregate the percent changes in the LST
and all the LULC types for each district between 1990 and 2020. Later, using percent LST change (1990–2020) as dependent variable
and the LULC types as explanatory variables, we first fit the individual models to evaluate the potential of each explanatory variable
to explain the spatial variation in the LST (total six models). After that, an overall multivariate model is fitted to investigate the com-
pound association between LULC types and the LST (Table 5).

Among the individual models, it is evident that largest variance is explained by agriculture 64%, R2 = 0.64) followed by forest
(63%, R2 = 0.63) and urban models (61%, R2 = 0.61). These outcomes are expected as all of these LULC play significant role to in-
fluence the LST in a given area (Dewan et al., 2021a; Ejiagha et al., 2020; H. M. Imran et al., 2021). On the other hand, the individual
models based on barren, water, and rangeland perform poorly as reflected by their goodness-of-fit values (R2 values of 0.29, 0.49, and
0.38, respectively). Moreover, the larger Akaike Information Criterion (AIC) value also represent the poor performance of rangeland
and barren models (AIC values 234.47 and 235.18, respectively). For the multivariate model, initially, all the LULC types are selected
as the explanatory variables. However, there exist a multicollinearity among the variables, which hinders the model running (more
details at https://bit.ly/3igr7pY). To resolve this issue, the number of explanatory variables are reduced and several multivariate
models are tested comparing them based on the goodness-of-fit and AIC values.

The most optimal model is achieved using the urban, agriculture, and rangeland LULC types as it shows R2 = 0.70 and
AIC = 220.64. This result shows that the multivariate model is able to explain 70% of variance in the dependent variable (LST in our
case) in the study area. Local R2 value for each district is mapped to show the spatially relative performance of this model (Fig. 10).
The lowest local R2 is observed for the eastern districts (55–60% variance explained). On the other hand, the central and south west-
erns districts have the highest local R2 values (77–82% variance explained). This shows that even with the lowest goodness-of-fit
value, the model performs reliably good. The reason behind this geographical disparity in local model performance could be the com-
plexity of LULC in different regions. For instance, it is evident that most of the urban areas are concentrated in eastern and northern
regions of the study area making the LULC more complex, and hence, the relatively lower goodness-of-fit is observed. On the con-
trary, the LULC is not that complex in the regions where the model performance is relatively higher. This situation highlights the need
for scaling down to major urban regions and model these associations at higher levels to provide further insights in this regard. The
results provided here (Figs. 4 and 6–8) are useful for such prioritization of regions to scale-down the areas for future assessments.

Table 5
Results from the Geographically Weighted Regression models. The individual models are arranged in descending order based on the goodness-of-fit value.

Model Explanatory Variable[s] Goodness-of-fit (R2) AIC

Individual Models Agriculture 0.64 227.86
Forest 0.63 228.55
Urban 0.61 216.24
Water 0.49 226.14
Rangeland 0.38 234.47
Barren 0.29 235.18

Multivariate model Urban, Agriculture, Rangeland 0.70 220.64

https://bit.ly/3igr7pY
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Fig. 10. Spatial distribution of Local R2 values for the multivariate model to evaluate the association between LULC types and LST in the study area.

5. Conclusion
The present study utilizes remote sensing data to analyze the land use and land cover (LULC) changes along with assessing the spa-

tial-temporal patterns and trends in the land surface temperature (LST) in Punjab, Pakistan—the most populous and developed
province in Pakistan—during the past three decades (1990–2020). This is achieved through the integration of cloud computing-based
platform (Google Earth Engine—GEE) and geospatial information models. In addition to exploring spatial heterogeneities, the poten-
tial association between LULC types and LST is evaluated, if any, using the geographically weighted regression. The results show an
exponential increase in the urbanization-led built-up areas between the study period (∼250% increase) with an annual increase of
∼8.5%.

The largest contribution towards this built-up increase is due to the transition of rangelands (38%) and agriculture (37%) LULC to
impervious surface. Noticeably, the highest percent increase in the built-up areas is observed in the most recent decade (i.e.,
2010–2020)—showing the increasing pace of urbanization in the study area in recent years. Without proper planning, this rapid in-
crease might create challenges hindering sustainable land management in Punjab. Similarly, the results on the LST show clear geo-
graphical disparities across the study area with south eastern, and western regions (mostly mountains, barren lands, and deserts) ex-
periencing relatively higher LST as compared with northern areas. While statistically significant inter-decadal differences are ob-
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served in the LST (99% confidence), the evaluation of top-20 cities in the study area in terms of population shows that the highest in-
crease in LST during 1990–2020 is observed for Kasur (6 °C).

The produced maps in this study could provide useful references for informed strategies for not only the sustainability of land re-
source in the study area, but could also attribute towards reducing the UHI effect in rapidly urbanizing cities of the study area. The re-
sults presented here are of particular importance regarding establishing guidelines related to urban development (i.e., no net loss of
green areas in regions with highest reduction in vegetation and rangelands). Similarly, city planners can prioritize the zones of the
highest LST in the study area to formulate appropriate measures for cooling effect—enhancing the comfort level within built-up ar-
eas.

Through an application of remote sensing within the context of society and environment, this study put forth important insights
related to LULC transitions in the study area, LST variations, and the geographical disparities in LST in response to LULC changes dur-
ing past three decades. The results improve our understandings regarding LULC dynamics in the study area to support sustainable ur-
banization process. Furthermore, the LST evaluation and its association with LULC change progressively help informing adaptation
related decisions and policy in Pakistan.

The authors do acknowledge the limitations of this current analysis despite its comprehensiveness regarding the subject matter.
For example, the study at this stage only deals with the historical patterns and trends in LULC and LST. It would have been more use-
ful if the future simulations of LULC and LST are produced to pinpoint the expected zones of larger transitions and higher temperature
in the study area. These simulations could be produced using advance neural networks, machine learning, and artificial intelligence-
based tools. However, this assessment in the study area at our scale of analysis requires higher computational capabilities—resulting
in higher costs. Similarly, due to the large study area, there might be several localized patterns of LULC changes and LST. Also, LST
variations at local levels would be sensitive to several other variables (i.e., wind circulations and building structures), which are not
included in this study due to its scope. Hence, future work could consider our results to identify important areas for scaling-down the
regions of interest to conduct these detailed assessments at local levels. Moreover, the association of LULC changes in this study is
only focused on LST. This can be expanded to evaluate the influence of LULC change on several other phenomenon such as increase/
decrease in exposure to natural hazards, land-degradation (i.e., soil erosion), carbon storage, and ecosystem service change among
the many. This situation shows the broader implications of the current study and the LULC change and LST mapping.
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