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A B S T R A C T   

Wetlands are crucial ecosystems as they enhance the quality of groundwater, protect from natural hazards, 
control erosion, and provide habitat to rare species of flora and fauna. Despite being valuable ecosystems, 
wetlands worldwide are decreasing in many regions, making mapping and monitoring of wetlands crucial. Large- 
scale wetlands mapping is challenging but recent advancements in machine learning, time series earth obser
vation data, and cloud computing have opened doors to new techniques to overcome such limitations. Through 
evaluating the effectiveness of different classification methods, this study provides a brief analysis of wetlands 
dynamics in Sylhet, Bangladesh. The analysis is carried out between 1985 and 2022 using Google Earth Engine, 
Landsat imagery, and several spectral indices. To obtain reliable results, four classification algorithms (Random 
Forest, Minimum Distance, Classification and Regression Trees, and Support Vector Machine) are evaluated. As a 
result, Random Forest proved to be the most efficient and accurate for wetlands mapping by producing 99% 
accuracy across all periods. Change detection shows a rapid decrease in the wetlands in Sylhet, which could have 
serious consequences to the aquatic and terrestrial species, water and soil quality, and wildlife population, if not 
addressed. Between 1985 and 2022, nearly 45% of the wetlands have been lost in the region due to shifting land- 
use patterns, especially the conversion of wetlands into vegetative land (~82,000 km2) as a result of increased 
agricultural practices in the region. Four critical regions (i.e., Derai, Sulla, Jamalganj, and Ajmiriganj) have 
undergone ~80% reduction in wetlands, requiring prompt interventions for conservation and restoration of 
wetlands given their diverse services.   

1. Introduction 

Wetlands are considered important and valuable ecosystems due to 
the provisioning of several services (Guo et al., 2017). Among all the 
natural ecosystems, wetland ecosystem services (WES) have the highest 
per-hectare value. Among the global ecosystems, the value of wetland 
ecosystem services is 47% of the total value (Xu et al., 2019). Bangladesh 
has many wetlands, including haors, baors, beels, freshwater lakes, 
marshes, rivers, streams, flooded agricultural regions, and estuarine 
systems with large mangrove swamps. Most of the wetlands in Bangla
desh's northeast are inland (M. Islam et al., 2018), which feed many fish 

species, amphibians, reptiles, birds, mammals, and invertebrate species. 
In Bangladesh, wetland ecosystems are significant for the country's so
cioeconomic, industrial, cultural, and ecological well-being as nearly 
50% of residents are directly dependent on wetlands (World Bank, 
2016). While wetlands play a crucial role in protecting the ecology of a 
specific region, many factors influence the ecological balance and 
biodiversity of the wetland ecosystem. The major factors involved in 
wetland degradation are water scarcity, industrialization, urbanization, 
climate change, land-use changes, pollution, change in hydrological 
flow, and intensive agriculture practices (Chatterjee et al., 2015; Dar 
et al., 2020). 
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The decline of wetlands is expected to worsen the situation in the 
country leading to larger flooding, intense and prolonged droughts, 
nutrient runoff, erosion, and a decline in the wildlife population. In the 
last few decades, it is estimated that due to non-conservative policies, 
land-use change, and climate change, Bangladesh has lost 45% of 
wetlands-rich areas (Islam, 2010), with varying local proportions. For 
instance, local studies in the Sylhet region indicate intensive environ
mental changes (forest loss, urbanization, agriculture), which are 
worsening constantly due to poor conservation policy implementation, 
uncontrolled overpopulation (Rashid, 2019), and extensive agriculture 
practices to combat food insecurity (Hoque, 2022; Sufian et al., 2017). 
While wetlands are crucial for Sylhet's ecosystem stability, they are not 
well documented and managed. To avoid the damage from becoming 
irreversible, it is crucial to map the state of wetlands and prepare a 
wetlands inventory, which can ensure its long-term monitoring and 
conservation (Guo et al., 2017). Besides this, multi-temporal wetlands 
change data (if available) allow transparency to countercheck govern
ment actions and policies for wetlands conservation assuring sustain
ability (Mahdianpari et al., 2020a, 2020b). 

In the past, policymakers relied solely on field surveys for the 
monitoring of wetlands. While this process is acceptable, it has many 
shortcomings including a high cost for labor work, time constraints, and 
finding experts in such fields to carry out surveys. Due to this, devel
oping regions, such as Sylhet in Bangladesh, lack proper survey facilities 
(Hoque, 2022). Conversely, remote sensing (RS) provides means to 
monitor long-term wetland situations using satellite-based multi-tem
poral data (Mallick et al., 2021). RS is a cost-effective technique 
compared to conventional field surveys and provides multi-spatial and 
multi-temporal information (Amani et al., 2019b). Furthermore, 
frequent and freely accessible satellite data allow researchers to study 
multi-temporal land use and land cover (LULC) trends with reasonably 
good accuracies (Waleed and Sajjad, 2022). Though there are numerous 
freely available satellite datasets, each has its advantages and draw
backs. For multi-temporal change studies, optical satellite data such as 
the Landsat archives are preferred because of their availability since the 
1970s and high revisit time (Kaplan et al., 2019). While remote sensing 
techniques are favorable for wetlands mapping, many associated chal
lenges need to be addressed first. These include higher computation 
power required for large-area classification, poor weather conditions 
during image acquisition, and classification errors due to intermixing of 
similar land-use classes having similar spectral signatures (Guo et al., 
2017). While such issues are unavoidable, recent advancements in sat
ellite sensors and data processing techniques permit overcoming such 
hurdles (Bhowmik, 2020; Masoud Mahdianpari et al., 2020a; Ståhl and 
Weimann, 2022). 

Google Earth Engine (GEE) is a cloud platform well known for its 
cloud-based large-scale computation capabilities. Among many other 
applications, it facilitates land-cover assessment on large scales (Prasai 
et al., 2021). Provided freely for educational purposes by Google, this 
platform allows analyzing geospatial data using a browser-based inter
face and JavaScript programming language (Tamiminia et al., 2020). As 
GEE hosts petabytes of satellite data from multiple sources, it becomes 
handy to run spatial modelling over a large area and get instant output. 
Besides this, GEE also supports the implementation of machine learning 
(ML)-based models known as classifiers. These classifiers allow super
vised classification to be more robust (Mahdianpari et al., 2020a, 
2020b). Despite many advancements in remote sensing techniques, the 
classification of wetlands is still a challenging task to perform. The main 
reason for this difficulty is the ecological similarities between different 
land use types (Anand and Oinam, 2020). While there are some 
ML-based algorithms with proven good accuracies in land-use classifi
cation, they need to be compared based on the geographical region to 
assess their true classification potential (Amani et al., 2019a). 

However, given the number of classifiers available, the choice of an 
optimal approach becomes challenging. Random Forest (RF) algorithm 
is designed on the decision trees principle with each node casting an 

individual vote and classification is decided by a majority of votes' de
cision (Waleed and Sajjad, 2022). It is a well-developed classifier, which 
is robust and is not affected by the noise in training data (Pelletier et al., 
2016). Minimum Distance (MD) classification algorithm, as the name 
indicates, is established on the principle of unknown image data cate
gorization from the least distance of multi-feature space (Talukdar et al., 
2020). As the MD classifier works on Euclidean distance, it is compar
atively faster in the classification of the training dataset in comparison 
with other well-known classifiers. Classification and Regression Tree 
(CART) method is also established on the decision tree principle except 
in its case, every fork is a split in a predictor variable and each last node 
contains a prediction for the outcome variable (Mahdianpari et al., 
2020a, 2020b). CART requires minimum data modification and 
filtering, and with minimum supervision, it can find interactions and 
data discontinuity (Sang et al., 2019). The Support Vector Machine 
(SVM) algorithm is designed on the group classification principle where 
it categorizes data belonging to each category with minimum available 
training samples. It is fast and well suited to relatively low sample sizes 
with a high degree of dimensional spaces (Mahdavi et al., 2018). 

Previous literature (e.g., Hassan, 2017; Md. N. Islam et al., 2018; and 
Salauddin and Islam, 2011) indicates wetlands degradation in Sylhet but 
to our knowledge, no study has provided a detailed framework-based 
assessment of wetlands mapping and change detection—hindering 
conservation and effective monitoring. Thus, this study utilizes state-of- 
the-art geospatial modelling approaches to (a) map multi-temporal 
wetlands (b) pixel-based change detection analysis to highlight wet
lands gain or loss trends, (c) change transition analysis to identify 
contributing factors for wetlands decline if any, and (d) aggregate 
wetlands gain or loss as percent change for each Upazila (sub-district) in 
Sylhet to inform local authorities. The outcomes from this study will 
establish the first-of-its-kind wetlands inventory for this region. This 
would allow concerned departments to monitor previous and current 
government policies and initiatives towards wetlands conservation in 
the region and to initiate wetlands restoration programs in those sub- 
districts where wetlands showed a major decline over the last decades. 

2. Methodology 

2.1. Study area 

The study area encompasses the entire Sylhet division located in the 
northeastern part of Bangladesh. Geographically, the region is sur
rounded by hillocks and lies between latitude 23◦59′N to 25◦12′N and 
longitude 90◦27′E to 92◦30 E (Fig. 1). The region's climate is a sub
tropical monsoon. The rainy season, which lasts from April to October, is 
hot and humid, with frequent heavy showers and thunderstorms. On the 
other hand, the short dry season, which lasts from November to 
February, is warm and relatively clear. Compared to the country's 
annual average rainfall, the northeastern region has the highest rainfall 
and the lowest temperature. The region's average annual temperature 
and rainfall are 23.6 ◦C and 5048 mm, respectively (Haque et al., 2017). 
Wetlands are the main ecosystem of the entire division. It is estimated 
that the core haor area (also known as the Sylhet haor basin) is spread 
over an area between 4450 km2 and 25,000 km2 (Haque et al., 2017; 
Iqbal et al., 2015). Sylhet is well known for one of the largest wetland 
areas in Asia, Hakaluki Haor. With an area of 18,386 ha, it is home to 
some rare fish species that have been listed as vulnerable and endan
gered (Iqbal et al., 2015). This system also protects lower floodplains 
from flash floods. Additionally, wetlands beautify their surrounding 
landscape during the monsoon and hot seasons (Chowdhury et al., 2022; 
Iqbal et al., 2015). 

2.2. General workflow 

This study was carried out through various steps including data 
acquisition, pre-processing, feature extraction, classification, accuracy 
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assessment, and change detection. Overall, the methodology consists of 
two sections. The first section comprises the use of GEE for satellite data 
acquisition, pre-processing, feature extraction, and collecting training 
and validation data. The second section consists of using GEE for ML- 
based wetland classification, accuracy assessment, and change detec
tion. The overall methodology adopted in this study is presented in 
Fig. 2. 

For spatial-temporal assessment of wetland areas, we choose Landsat 
satellite data available inside the GEE data catalogue (https://develope 
rs.google.com/earth-engine/datasets). While other datasets are avail
able, they either lack good resolution or sufficient time coverage. Since 
Landsat satellite data are available after the 1970s, we used Landstat-5 
Thematic Mapper (TM) tier-1 Surface Reflectance (SR) and the Landsat- 
8 Operational Land Imager (OLI). Using these two satellite instruments, 
five image composites were prepared. The first three (1985–87, 
1995–97, 2005–07) were prepared using Landsat 5 TM data, whereas 
the last two (2015–17, and 2020–22) were prepared using Landsat-8 OLI 
data. Since wetland changes occur seasonally, we filtered satellite im
ages only in the first three months (January, February, and March). As 
Sylhet lies in a tropical region making it prone to cloud coverage, we 
filtered all images below 10% cloud coverage to ensure data quality. 
Overall, 235 images were acquired for the analysis presented in this 
study. The details of composites and filtered images are given in Sup
plementary Table S1. Cloud masking was performed on the filtered 
images using the quality assessment band of Landsat (Waleed and Saj
jad, 2022). This step ensures that only pixels without cloud presence are 
further taken for processing, which greatly improves the input data 
quality. After this, all cloud-masked images were aggregated into one 

image using the median pixel of each cell of the figures composite. For 
this operation, the “.median()” function of GEE was applied to all the 
resultant cloud-masked images. 

2.3. Preprocessing 

Land-use classification results can be improved using Spectral 
Indices (SIs) (Hislop et al., 2018). SIs are preferred mostly due to their 
ability to differentiate certain earth's features (i.e., vegetation cover, 
barren land, and water cover). Besides, they are well-recognized for 
reducing the influence of atmospheric and topographic noise (Waleed 
and Sajjad, 2022). Therefore, based on the literature, we utilized the top 
five wetlands SIs including the Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Built-up Index (NDBI), Modified 
Normalized Difference Water Index (MNDWI), Enhanced Vegetation 
Index (EVI), and Land Surface Water Index (LSWI). In GEE, these SI's 
were prepared and added to each of the five composite images using the 
“addBands()” function of GEE. As these are very common SIs in the field, 
further detail of each SI is given in Table S2. Before feeding these SI's to 
our classifier, we performed collinearity and variable importance ana
lyses. The collinearity analysis cross-checks the correlation of the input 
variables supplied to the ML model and ensures that the model remains 
unbiased in making end decisions (Waleed et al., 2023). The lowest 
collinearity was found among MNDWI, NDVI, LSWI, NDBI, and EVI, and 
therefore were selected for further assessment. 

The variable importance analysis sorts each feature based on its 
predictive power (Mahdianpari et al., 2020a, 2020b). The resulting 
variable importance statistics show the features (including SI's and 

Fig. 1. Study area map of Sylhet Division  
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image bands) which played a crucial role in classification and vice versa. 
For this study, we feed 10 features to our ML classifiers including 
Landsat bands (Blue, Green, Red, Near-Infrared (NIR), and Shortwave- 
Infrared (SWIR)) along with SIs (MNDWI, NDVI, LSWI, NDBI, and 
EVI). Due to the unavailability of a wetland inventory database and field 
survey data, this study focused primarily on satellite-derived samples. 
Four general land-use classes consisting of impervious, vegetation, 
wetland, and dense vegetation are selected, details of which are given in 
Table 1. After this, using multiple auxiliary data sources (Google Earth 
Imagery and Landsat False Color Composite (FCC) Images) and respec
tive Landsat composite images (Fig. 2), we collected ~2000 samples for 
each class in the form of point or polygon inside GEE. The methods used 
for providing the training and testing sampling data must be carefully 
considered as ML-based classifiers use pre-labelled samples to train 
models and are sensitive to uneven training datasets (Dronova, 2015). 

Conventionally, various sampling techniques are used to acquire 
samples that were further utilized for training/validation purposes. 
Some of the most commonly used sampling approaches include random, 
systematic, and stratified sampling (Talukdar et al., 2020). The main 
problem with using random sampling is that it selects pixels randomly 
creating a high probability of missing out particular locations or group 
of samples. This may generate a bias in the training dataset (Hu et al., 
2021). On the contrary, systematic sampling requires a close 

approximation of data and is less random (Waleed et al., 2022). Thus, 
stratified sampling was used in this study. This approach divides data 
into subgroups where each subgroup is randomly sampled. Hence, this 
approach helps to obtain accurate estimation for all the land-use classes. 
After collecting samples for each year and each class, 70% of the samples 
were used to train an ML-based classifier and 30% of the samples were 
used for validation—accuracy assessment. 

2.4. Machine learning-based classification 

There are many methods for the classification of wetlands, but recent 
studies suggest RF, MD, CART, and SVM classifiers perform better than 
others (Dronova, 2015; Guo et al., 2017; Mahdavi et al., 2018). Hence in 
this study, we initially utilized these four algorithms and evaluate their 
wetland classification potential in the study area. Then, the best- 
performing algorithm (based on accuracy) was used for further multi- 
temporal wetland classification and change detection. Among these al
gorithms, default tuning parameters provided by GEE were assigned to 
MD, CART, and SVM for classification. For the RF algorithm, the number 
of trees value was a required input, which was set to 115 as determined 
in the literature (Shafi et al., 2023). 

2.5. Post-classification procedures 

Post-classification includes accuracy assessment, area statistics, 
wetlands change analysis, and administrative unit-level assessment of 
wetlands. To assess the performance of the aforementioned ML classi
fiers and the quality of results, it is necessary to perform an accuracy 
assessment (Rwanga and Ndambuki, 2017). In this study, the Kappa 
coefficient (K), F1-Score (F1S), Overall Accuracy (OA), Producer Accu
racy (PA), and User Accuracy (UA) were used to evaluate the perfor
mance of a classifier. The accuracy metrics were calculated in GEE and 
the outcomes were based on the confusion matrix. The confusion matrix 
is a table that defines the performance of classification by analyzing the 
values of true positive, true negative, false positive, and false negative 

Fig. 2. Methodology flowchart representing the overall workflow followed in this research (i.e., preprocessing, ML-based classification, and geospatial analysis).  

Table 1 
The description of land cover classes in Sylhet Division, Bangladesh.  

Land use class Description 

Impervious Residential areas, industrial areas, transportation, 
communications, mixed urban, and other urban areas, bare soil, 
sandy areas, strip mines, bare rock 

Wetland Wetlands, inland water bodies, rivers, reservoirs, lakes, low-lying 
areas 

Vegetation Cultivated land, fallow land, and terraces 
Dense 

vegetation 
Deciduous forest land, evergreen forest land, mixed forest land, 
grassland, orchard, and urban green areas  
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classified pixels (Waleed and Sajjad, 2022). Furthermore, we produced 
heatmaps to graphically represent the confusion matrix using the Sea
born library of Python (see details at https://seaborn.pydata.org/). The 
equations used to derive different accuracy metrics are provided in 
Table 2. For area estimation of each class, we utilized GEE's built-in 
command “ee.Image.pixelArea()”. 

To analyze multi-year wetlands change, the change detection tech
nique was employed. Change detection involves pixel-by-pixel com
parison of multi-year classified thematic maps (Waleed and Sajjad, 
2022) and is an important part of satellite image classification as it 
provides environmental monitoring applications, such as change tran
sition and natural resource depletion in space and time (Adam et al., 
2010).First, wetland change analysis (statistics based) was performed by 
subtracting pre-area (the initial year for each LULC class) from post-area 
(the final year for each LULC class). For raster-based change analysis, 
ArcGIS Pro V3.0 was used (available at https://pro.arcgis.com/). Spe
cifically, the “Change Detection Wizard” (an ArcGIS Pro tool) was used to 
analyze the changing patterns in wetlands over multiple years. Simi
larly, for change transition analysis (i.e., which wetland area converts 
into which land use class), the same tool was used. Lastly, for the 
assessment at administrative unit levels, the change detection was per
formed in each Upazila using the ArcGIS Pro tool called “Zonal statistics 
as table”. This tool provides area change statistics, which were then 
imported to the Upazila vector file using the “Join” tool in ArcGIS Pro. 

3. Results 

3.1. Machine learning-based classification 

To assess the effectiveness of wetland mapping, classification is 
conducted using different methods including RF, CART, MD, and SVM. 
The results from these methods are compared for the 2020–22 com
posite as illustrated in Fig. 3a. The comparison shows that only MD 
shows an overestimation of the impervious class, whereas RF, CART, 
and SVM show a similar distribution of land-use classes. Supplementary 
Table S3 represents the accuracy of each classification method (in all 
classes) for all five composites (1985–2022). Among all the methods, RF 
showed the highest accuracy to classify each class (OA = 0.99 and K =
0.99). On the other hand, MD showed the lowest accuracy of 0.72 and 
0.76 for K and OA, respectively. The accuracy results of CART and SVM 
are in between with OA and K of 0.78 and 0.81, respectively. 

Fig. 3b shows the heat maps representing the actual and predicted 
pixels of classified maps for each composite between 1985 and 2022. 
Fig. 3c shows bar plots of K, F1s, UA, PA, and OA of RF classification 
(best performing model), with an average accuracy of 98%. The heat 
maps represent accuracy maintained by RF while identifying different 
classes efficiently with only a 2% margin of error. The variable impor
tance ranking highlights the most useful variables (SIs and Landsat 
bands), which contributed to the increase in the efficiency and accuracy 
of the classification results (Fig. 4). Fig. 4a shows the overall ranking, in 
which NDVI, MNDWI, and EVI reflect the highest ranking. NDBI and 

Green band, on the other hand, show the lowest one. The heatmap shows 
the multi-year efficiency of variables, making it prominent that the 
highly efficient variables are NDVI, MNDWI, and EVI for each period 
(Fig. 4b). 

3.2. Wetland distribution in the study area 

The classified maps of the study area generated by RF for five com
posites are shown in Fig. 5. The land use map for 1985–87 shows that the 
north-western part is dominated by wetlands with some fragments of 
impervious surface and vegetation with the greatest land coverage in the 
region, see Fig. 5(a). Based on the classified maps as shown in Figs. 5b-e, 
the land coverage in four decades has significantly changed due to 
transitions among different classes. The loss of wetlands is more sig
nificant from 1995 to 97 to 2005–07 (Figs. 5a and b) though there is a 
slight increase in wetlands from 2005 to 07 to 2015–17 (Figs. 5c and d). 
The increase in impervious coverage in the northeastern part and the 
shift of wetlands from the western to the eastern part of the region from 
2020 to 22 are also observed, see Fig. 5e. Notably, the loss of wetlands is 
significant across the study period. 

3.3. Wetlands change analysis 

3.3.1. Inter-decadal change detection 
Fig. 6 highlights the change detection in wetlands per decade. For 

instance, Figs. 6a and b depict that wetlands experienced a massive loss 
(~30%, Supplementary Fig. S1) in area coverage from 1985 to 1995 and 
a mediocre loss from 1995 to 2005, respectively (represented in red 
shades). In addition to the loss of coverage in the first two decades, the 
wetland gain can also be seen during 2005–15 (Fig. 6c), where the 
wetlands have been recovering (~11%, Supplementary Fig. S1b), 
especially in northwestern part. Fig. 6d illustrates the increasing trend of 
wetlands in the eastern part of the region (green shades). Overall, the 
geographical distribution of gain and loss of wetland regions for the 
entire period (1985–2022) is presented in Fig. 6e with higher concen
trations of wetland loss in northwestern areas (overall ~45% loss as 
depicted in Supplementary Fig. S1b). 

3.3.2. Transitions in wetlands during 1985–2022 
The conversion of wetlands to non-wetland classes and vice versa is 

evident during 1985–2022 (Fig. 7). Fig. 7a illustrates vegetation as a 
significant contributor to the wetland's loss in the first decade 
(1985–95). Fig. 7b shows the loss of wetlands as a result of significant 
conversion to vegetation and minor conversion to impervious and dense 
vegetation. Fig. 7c represents the conversion of vegetation and dense 
vegetation to wetlands that led to the increase in land coverage of 
wetlands. Fig. 7d also represents the transitional changes in the most 
recent decade (i.e., 2015–22) with a net gain of wetlands because of the 
rare conversion of non-wetland classes to wetlands. Finally, Fig. 7e ex
plains the overall transitional changes over the four decades with a 
significant loss of area coverage in the western part and a slight gain in 
area coverage in the eastern part of the study area. 

The transitions are further quantified to evaluate the state of land 
cover change during 1985–2022 (Fig. 7). Sankey diagram (Fig. 7f) il
lustrates that over the past four decades, wetlands were reduced. Of 
these, 49% are converted to vegetation, 15% to dense vegetation, and 
only 1% to impervious. Hence, it is obvious that the transition to 
vegetation land cover (having a major proportion of agricultural land, 
Table 1) is the most important factor responsible for the loss of wetlands 
in the region followed by dense vegetation. Fig. 7f further explains the 
conversion of other classes to wetlands (wetland gain). Based on the 
results, an 18% increase in the overall wetland coverage has been 
recorded due to the conversion of 15.9%, 1.8%, and 1.1% vegetation, 
impervious, and dense vegetation, respectively. Fig. 7g reveals the 
decadal variations in the area for each class from 1985 to 2022. Area- 
wise, the highest area change flow was observed from the wetland to 

Table 2 
Accuracy assessment metrics used in this study.  

Name Abbreviation Equation References 

Kappa Coefficient K K =
po − pe

1 − pe 

(Cohen, 1960) 

F1-Score F1S 2×
PA × UA
PA + UA 

(Sasaki, 2007) 

Overall Accuracy OA TP + TN
TP + TN + FP + FN 

(Congalton, 1991) 

Producer Accuracy PA TP
TP + FN 

User Accuracy UA TP
TP + FP  

where po is a relative observed agreement, pe is the probability of chance, TP is 
true-positive, TN is true-negative FP is false-positive, and FN is false-negative. 
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vegetation class. Wetlands area converted into vegetation is nearly 
61,000 km2 (1985–1995), 51,000 km2 (1995–2005), 31,000 km2 

(2005–2015), and 39,000 km2 (2015–2022), see Fig. 7g. However, for 
the overall (1985–2022) change transition, nearly 82,000 km2 of 
wetland area is converted into vegetative land, showing that agriculture- 
based anthropogenic activities resulted in wetland loss. 

To represent the loss and gain of wetlands in sub-districts (Upazilas) 
of the study area, a thematic map is produced (Fig. 8). In general, the 

overall western side of the Sylhet division shows wetland loss trends, 
whereas the eastern side shows wetland gain trends. Precisely, ~80% of 
wetlands have been lost in the western Upazilas. In particular, Derai, 
Sulla, Jamalganj, and Ajmiriganj faced intensive losses in wetland area 
coverage. However, most of the eastern Upazilas have experienced an 
increase in the area coverage between 70% to 200%, while a few Upa
zilas have maintained the wetlands and some with a slight increase in 
area. Gowainghat, Juri, and Kulaura are the most prominent Upazilas 

Fig. 3. The Figure is divided into three sections 
(a-c). The first section (a) shows the comparison 
of different models for wetlands classification 
using the 2020–22 composite image. The second 
section (b) shows heatmaps based on the confu
sion matrix of the best-performing Random For
est (RF) model for each composite image 
(1985–2022). The confusion matrix-based heat
maps represent the relationship between actual 
and predicted pixels of wetlands classification 
maps for 1985–2022 composites. These heatmaps 
are produced using the Seaborn library of python 
(https://seaborn.pydata.org/) and axis names 
include Impervious (I), Vegetation (V), Wetlands 
(W), and Dense Vegetation (DV). The last section 
(c) shows the detailed accuracy assessment of 
wetlands maps using accuracy metrics i.e., the 
Kappa statistics (K), Overall Accuracy (OA), F1- 
Score (F1S), Producer Accuracy (PA), and User 
Accuracy (UA). The dotted horizontal line in (c) 
is for reference accuracy values >0.98.   
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for gains in area coverage of wetlands. 

4. Discussion 

4.1. Wetlands changes and its drivers in the Sylhet division 

In the context of providing spatial-temporal baseline data for 
wetland-related investigations (e.g., carbon storage and wetland sus
tainability), this study integrates remote sensing, geo-information 
modelling, and machine learning approaches. The results from this 
study provide valuable information having important implications for 
decisions and policies regarding wetland conservation. The observed 
decline in wetlands reflects the loopholes in government policies to 
cause wetland losses along with highlighting the ill-managed wetland- 
rich regions. From Fig. 7, it is evident that around 45% of wetlands 
degradation took place between 1985 and 2022 whereas, the vegetation 
and dense vegetation classes showed an increase of ~9 and 15%, 
respectively. Hence, there has been a land-use shifting pattern in the 
region in the last few decades. While this study showed vegetation class 
as a significant contributing factor to wetland decline, a framework was 
needed to identify the affected regions. Therefore to aid sustainable 
conservation and restoration activities, this study further quantifies 
areas with the highest wetland degradation at the lowest sub- 
administration level (Upazila or sub-districts). Therefore, we evaluated 

the area percent change aggregated to each Upazila boundary (Fig. 8). 
The highest decline in wetlands area is observed in four Upazila 
including Jamalganj, Derai, Sulla, and Ajmiriganj, with a decrease be
tween − 70 to − 82% during 1985–2022. It is worth mentioning that to 
the best of our knowledge, no other study has addressed this issue of 
wetlands degradation for these regions (division, district, and sub- 
district) so far. Hence, the findings from this study further benchmark 
the baseline for future wetland investigations in this region. 

While no study at the scale of our investigation is available to 
compare our findings in this region, several other studies have reported 
similar LULC changing trends. A recent study by Kafy et al. (2022), for 
instance, suggests that Sylhet city has experienced high urbanization (an 
increase of 10.1 km2 in built-up areas) in the last 25 years at the expense 
of vegetation, water, and barren land. On the contrary, at the sub-district 
or upper administration level, vegetation plays a significant role because 
agriculture is the primary occupation for ~90% of residents in adjoining 
rural areas (World Bank, 2016). This indicates how agriculture is 
responsible for most of the land-use shifting patterns when one moves 
from core cities to sub-district and upper administrative levels (Waleed 
and Sajjad, 2022). Hence, it is reasonable to say that the conversion of 
wetlands to agriculture-related economic activities could further dete
riorate the overall situation of wetlands in the regions—resulting in the 
loss of diverse services. For this purpose, the findings from this study 
provide important references (i.e., the regions with larger transitions 

Fig. 4. (a) Variable importance ranking for RF classification, and (b) heatmap for multi-year variables efficiency.  
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from wetlands to agricultural land; Fig. 7). 
While there are few previous studies (Hassan, 2017; Md. N. Islam 

et al., 2018; Salauddin and Islam, 2011) that addressed wetland area 
change-related issues at the local scale, almost all lack in addressing the 
wetland gain or loss trends in the region. Another important gap is the 
wetland transition analysis, which is equally important to analyze the 

conversion of wetlands into other land-use types and vice-versa. Among 
these aforementioned studies, only Salauddin and Islam (2011) high
lighted the increase in vegetative (agricultural) land and the decrease in 
the wetland area. But at the same time, there is no systematic determi
nation of the factors behind the decline of wetlands. In this context, 
while the wetland loss results from this study are in line with existing 

Fig. 5. Wetland land-use maps for Sylhet for (a) 1985–87, (b) 1995–97, (c) 2005–07, (d) 2015–17, and (e) 2020–2022.  

Fig. 6. Wetlands change detection analysis for (a) 1985–95, (b) 1995–2005, (c) 2005–15, (d) 2015–22, and (e) 1985–2022. Note that the dark and light black 
boundaries represent the Sylhet division and sub-districts of the Sylhet region respectively. Additionally, the coloured numbers in each map frame represent overall 
wetland class percent change (%), where red represents a decline and green shows improvement. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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literature, the identification of the driving factors responsible for this 
decline (Fig. 7) is particularly useful for effective measures. 

4.2. Limitations and the way forward 

While this study performed wetland mapping with good accuracy, 
some limitations are important to discuss. The first is the unavailability 
of wetlands inventory data, which could be used for training and vali
dation purposes. In developed countries, such data are provided by 
government or private bodies mostly free of charge. If not, many data
sets are collected through field campaigns using government-provided 

funding. Such data include detailed point or polygon geolocation sam
ples for different wetland classes (swamps, marshes, bog, fen). For 
example, Mahdianpari et al. (2020a, 2020b) evaluated spatial-temporal 
patterns of different wetlands classes in Newfoundland (Canada) using 
432 wetland polygon samples collected during field surveys from 2015 
to 2017. They highlighted the issue of budget and time constraints for 
arranging different field surveys. Although such data are necessary for 
detailed and sub-classes-based classification of wetlands, it is difficult to 
map wetland classes with good accuracy in the absence of such in
ventories, especially for larger regions like the Sylhet division. There
fore, to counter this issue, this study considered wetlands as the main 

Fig. 7. Wetlands transition maps for (a) 1985–95, (b) 1995–2005, (c) 2005–15, (d) 2015–22, and (e) 1985–2022. Note that the dark and light black boundaries 
represent the division and districts of the Sylhet region. (f) shows Sankey diagrams of changes of wetland in percentage from and to different classes for the 
1985–2022 period and (g) shows transition area changes for each decade and the overall 1985–2022 period. 
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class containing merged subclasses, such as swamps, marshes, bog, fen, 
and open water. Once such ground truths become available, the pro
duced maps of wetlands as a result of this study could be updated and 
refined for further comprehensiveness and accuracy. 

Another issue associated with wetland classification is the cloud 
coverage issue. When using multispectral images (such as from Landsat 
mission satellites), cloud presence severely degrades data quality and 
results in abrupt pixel values, which could lead to classification bias 
(Waleed and Sajjad, 2022). While previous studies support the use of 
microwave satellite data such as Sentinel-1, which can penetrate 
through clouds (Singha et al., 2020), such techniques are computa
tionally intensive. Furthermore, the data are only available for the 
previous six to eight years, which is not aligned with the scope of this 
study and hinders establishing long-term wetland analysis. Hence, the 
data catalogue of Landsat, reaching back as far as the 1980s, is utilized. 
Thus, to deal with the cloud cover issue, we choose images from three 
years between the pre-monsoon months (January, February, and March) 
with minimum cloud coverage (<10%) for each composite. Further
more, to make a completely cloud-free composite, we removed every 
cloudy pixel using the quality assessment Landsat band as mentioned in 
the methodology section. 

For variable importance analysis (Fig. 4), it was observed that some 
SIs showed comparatively higher importance than others. This phe
nomenon may be due to water sensitivity towards the near infrared 
region of electromagnetic spectrum. Due to this, water appears as a 
darker pixel, when captured by the near-infrared sensor of a satellite. 
These darker pixels can be easily separated using simple threshold 
techniques (Ji et al., 2009). However, due to the similarity of clouds and 
shadow reflectance with water reflectance, noise is created, and water 
pixels are not correctly extracted. Thus, SIs are developed using multiple 

bands to get better object delineation (Bijeesh and Narasimhamurthy, 
2019). In our case, SIs also proved crucial as they aided in the improved 
classification of the wetlands. 

From the viewpoint of methodology, we found that the RF classifier 
is the optimal choice, which is also preferred for its proven results in 
several other regions of the world (Guo et al., 2017; Mahdavi et al., 
2018; Masoud Mahdianpari et al., 2020b). Hence, future studies can 
employ the RF technique to investigate wetlands. The primary reason for 
RF's improved accuracy is that it works on the principle of decision trees, 
in which each tree is divided into multiple features until a decision is 
finalized. In this process, features are randomly divided, and the model 
only considers small subset of features. This process ensures that vari
ance can be averaged (Pelletier et al., 2016). Such ability of RF makes it 
robust despite of smaller sample size and provides good decision accu
racy in most conditions. 

Creating multi-temporal and highly accurate wetland maps is 
important to acquire knowledge about the past and current wetland-rich 
regions, which ultimately helps in proper monitoring and conservation- 
related initiatives by concerned departments (DeLancey et al., 2022). 
The wetlands change transition analysis from this study also provided 
spatial and quantitative insights regarding the conversion of different 
LULC classes. While such wetland classification techniques are already 
applied in many developed regions of the world, the development of 
further robust and cost-effective wetland mapping techniques is always 
encouraged (Mahdavi et al., 2018). With the development of new 
techniques, it is equally important to apply existing techniques to other 
areas of the world prone to wetland degradation. Doing this will ulti
mately provide wetland gain or loss-related insights for different periods 
providing support for corrective decisions in the context of wetland 
sustainability (Guo et al., 2017). Additionally, such change detection 

Fig. 8. Wetland area change (percent) during 1985 and 2022 aggregated to each Upazila boundary.  
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data would allow concerned agencies to further evaluate the trans
parency of government policies implemented time-to-time and will 
reflect their actions in the past regarding wetland conservation. 

5. Conclusion 

Wetlands are important ecosystems because of their multiple ad
vantages to humans and the environment. Therefore, monitoring and 
sustaining wetlands should be the utmost priority of the concerned au
thorities. Wetlands in the Sylhet division are home to many rare and 
endangered species requiring the government's intention to take 
necessary initiatives to preserve them. This study concludes that 
satellite-based time series data and machine learning algorithms are 
particularly useful and cost-effective for the classification of wetlands in 
the context of their sustainability—particularly in developing areas of 
the world where monitoring costs are a major constraint. Classification 
of the study area has been done by different methods and the results are 
compared for all the methods. It is evident that RF is a highly accurate 
method for the classification of wetlands as compared with other ap
proaches (i.e., SVM, CART, and MD). This study also highlights the 
variation in the area coverage of wetlands and all other classes including 
vegetation, impervious, and dense vegetation. Our findings conclude 
that wetlands have experienced instability over the past four decades 
with ~45% net loss. Most of this wetland loss is the consequence of the 
transition of wetlands to vegetation land (82,000 km2 transition). The 
variations in other classes have also been analyzed and the statistical 
analysis shows that transitional changes to agricultural land are the most 
important factor in the loss of wetlands. The recent decline in wetlands 
further highlights that the government initiatives in the past were not 
adequate regarding wetlands conservation—particularly in the western 
regions of the study area. To restore wetlands in the region, the gov
ernment and decision-makers should concentrate their efforts in those 
areas that experienced high wetland declines, as shown in this study. 
Finally, future research should focus on the loss of ecosystem services (i. 
e., water purification, erosion, flood control, and carbon storage) and 
patterns and trends assessment of loss and gain in carbon storage at 
several geographical scales. This study could potentially act as a 
stepping-stone towards such investigations. 
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