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Abstract

Flood susceptibility mapping (FSM) is crucial for effective flood risk manage-

ment, particularly in flood-prone regions like Pakistan. This study addresses

the need for accurate and scalable FSM by systematically evaluating the perfor-

mance of 14 machine learning (ML) models in high-risk areas of Pakistan. The

novelty lies in the comprehensive comparison of these models and the use of

explainable artificial intelligence (XAI) techniques. We employed XAI to iden-

tify significant conditioning factors for flood susceptibility at both the model

training and prediction stages. The models were assessed for both accuracy

and scalability, with specific focus on computational efficiency. Our findings

indicate that LGBM and XGBoost are the top performers in terms of accuracy,

with XGBoost also excelling in scalability, achieving a prediction time of �18 s

compared to LGBM's 22 s and random forest's 31 s. The evaluation framework

presented is applicable to other flood-prone regions and highlights that LGBM

is superior for accuracy-focused applications, while XGBoost is optimal for sce-

narios with computational constraints. The findings of this study can assist in

accurate FSM in different regions and can also assist in scaling up the analysis

to a larger geographical region which could assist in better decision-making

and informed policy production for flood risk management.
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1 | INTRODUCTION

Globally, 1.81 billion people (23% of the global popula-
tion) are exposed to high flood risk, which is expected to
increase to 2.3 billion in 2050 (Rentschler et al., 2022).

While floods are inevitable and affect millions of people
every year, developed countries overcome floods with
good management, strong infrastructure, and data-driven
policies. Conversely, developing countries suffer more as
they are ill-equipped, have limited resources, inadequate

Received: 20 February 2024 Revised: 5 July 2024 Accepted: 31 October 2024

DOI: 10.1111/jfr3.13047

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Author(s). Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.

J Flood Risk Management. 2025;18:e13047. wileyonlinelibrary.com/journal/jfr3 1 of 20

https://doi.org/10.1111/jfr3.13047

https://orcid.org/0000-0003-0006-2490
https://orcid.org/0000-0002-1576-1342
mailto:mah.sajjad@hotmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/jfr3
https://doi.org/10.1111/jfr3.13047
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjfr3.13047&domain=pdf&date_stamp=2024-11-24


infrastructure, and higher population density in flood-
prone areas (Devitt et al., 2023). Economically, alone in
2020, floods caused nearly 105 USD billion in damages,
which is projected to rise to 150 USD billion in 2050
(World Meteorological Organization, 2022). Pakistan,
which globally ranks 5th in population and 8th in terms
of climate vulnerability, is a country that has faced cata-
clysmic floods in recent years (Eckstein et al., 2021). The
unique geography of Pakistan makes it susceptible to
heavy monsoon rains and riverine flooding (Sajjad
et al., 2023). For instance, due to the recent 2022 floods
in Pakistan, the economic loss exceeded 15.2 USD billion,
affecting 33 million people among which 1730 died
(World Bank, 2022).

Flood susceptibility (FS) depicts the inherent vulnera-
bility of an area to flooding, indicating the likelihood of it
being affected by a flood event. In the face of increasing
global challenges posed by floods, flood susceptibility map-
ping (FSM) has emerged as a crucial component of effec-
tive flood risk management and disaster preparedness,
providing critical insights for policymakers, urban plan-
ners, and stakeholders, enabling them to make informed
decisions and implement targeted interventions (Seleem
et al., 2022). By effectively identifying high-risk areas and
comprehending the contributing factors to flood vulnera-
bility, such as geography, climate, and land use, proactive
measures can be taken to mitigate the impacts of flooding,
safeguard communities, and minimise economic losses
(Towfiqul et al., 2021; Zhao et al., 2019). Integrating FS
analysis into planning processes empowers societies to
enhance resilience and promote sustainable development
in flood-prone regions (Serdar et al., 2022).

Conventional FSM methods involve integrating vari-
ous geospatial data, hydrological modelling, and
advanced analytical techniques. Using multiple flood
influencing factors, flood risk maps are prepared, which
assist in identifying regions where significant impacts are
more likely (Schumann et al., 2009). Furthermore, hydro-
logical models are employed for future simulation, which
simulates flood risk scenarios based on historical data
and future climate projections (Tsakiris, 2014). Recent
advancements in machine learning (ML) have signifi-
cantly enhanced FSM. However, many existing studies
focus on limited geographic areas or specific models,
lacking a comprehensive comparative analysis. Studies
such as Karakas et al. (2023) and Luu et al. (2021) have
demonstrated the potential of ML in FSM but often over-
look scalability and broader applicability. Moreover, the
validation of these models against real-world flood events
remains inadequate. This study addresses these short-
comings by evaluating the performance and scalability of
14 different ML models in FSM across diverse and high-
risk regions of Pakistan.

Flood-influencing factors are generally categorised
into meteorological (i.e., the frequency, duration, and
intensity of precipitation events), hydrological (i.e., the
characteristics of topographic surface, elevation, river,
basin, etc.), and anthropogenic factors, such as land use,
urbanisation, and vegetation change (Mudashiru
et al., 2021; Nkwunonwo et al., 2020; Zhang et al., 2023).
Thus, relying on ML-based modelling of FSM through
geospatial technology, data integration, and advanced
modelling techniques provides a comprehensive under-
standing of flood-prone areas, enabling informed
decision-making (Mudashiru et al., 2021; Nkwunonwo
et al., 2020; Notti et al., 2018; Schumann et al., 2009;
Seleem et al., 2022; Serdar et al., 2022; Teng et al., 2017;
Tsakiris, 2014).

The growing global flood risk, with 1.81 billion people
currently exposed and projections suggesting an increase
to 2.3 billion by 2050, underscores the urgent need for
effective FSM. Existing FSM methods often fail to scale
effectively or consider local variations in geography and
climate, leading to suboptimal results. Our study aims to
bridge these gaps by comparing the performance of mul-
tiple ML models in FSM, particularly focusing on their
scalability and applicability in high-risk regions of
Pakistan. Scaling the modelling to a larger geographical
region requires extensive knowledge about model work-
ing, training time, prediction time, and computational
requirements, which are currently not documented well.
Our study aims to address the critical gaps in current
FSM approaches by providing a comprehensive compara-
tive analysis of 14 ML models. We focus on evaluating
their scalability, accuracy, and applicability in high-risk
regions, specifically in Pakistan. This research not only
benchmarks the performance of these models but also
offers insights into their suitability for large-scale and
diverse geographic applications, ultimately contributing
to more effective flood risk management.

2 | SITE DESCRIPTION

Among developing countries, Pakistan has faced deadly
floods in recent years due to climate change, geography,
poverty, and negligence from the concerned authorities
(Sajjad et al., 2023; Ullah et al., 2022). A recent study by
Akhtar et al. (2023) found that for the recent 2022 flood
in Pakistan, Shikarpur, Jacobabad, and Larkana were the
three high-priority regions due to their significant popu-
lation exposure and extensive flood extent. Similarly,
Pakistan's previous flood impacts have been devastating
in terms of social, economic, and environmental damages
(i.e., the flood of 2010 and 2014). So as a case study, we
focused on these critical regions to provide further insight
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into flood susceptible areas and, at the same time, com-
pared various models' efficiency in terms of accuracy and
scalability.

The three key regions (i.e., Shikarpur, Jacobabad, and
Larkana) are situated in the South of Pakistan, specifi-
cally in Sindh province (Figure 1). The study area covers
an area of �7164 Km2, with Jacobabad, Larkana, and
Shikarpur each having 2691 Km2, 1921 Km2, and 2551
Km2 of area, respectively. The total population of the
study area is 877,021, with which Larkana has the high-
est population of 490,508, whereas Jacobabad and Shikar-
pur have 195,437 and 191,076, respectively.1 The study
area is in a subtropical region with an elevation profile
between 38 and 166 m above sea level. The province of
Sindh lies between two monsoons, namely the southwest
monsoon (from the Indian Ocean) and the northeast, also
known as the retreating monsoon. While the average
annual rainfall of Sindh province is only 230 mm, the
region has suffered dramatically due to historical flood
events resulting in catastrophic damage (Atif et al., 2021).

3 | DATA AND METHODS

3.1 | Data acquisition

The overall methodology of this study is divided into six
sections, which include data acquisition, feature prepara-
tion, training and validation samples, ML modelling,
accuracy assessment, and flood risk assessment
(Figure 2). The study starts with using data from multiple
sources, including Landsat-8 (United States Geological
Survey2), digital elevation model (Hawker et al., 2022),
vector data (i.e., shapefile data containing Pakistan
administrative boundaries, river, basin, and roads shape-
files3), flood inventory data, and Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) rain-
fall data (Wahyuni et al., 2021)—see Table 1. These data-
sets are then used to prepare 11 flood influencing factors,
which are preprocessed and supplied to ML models.
Lastly, various accuracy assessment metrics are used to
evaluate the performance of each ML model in FSM.

FIGURE 1 Study area map of three

districts (Larkana, Shikarpur, and

Jacobabad) with population density. The

population density data is taken from

www.worldpop.org.
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3.2 | Features preparation

3.2.1 | Flood inventory preparation

A flood inventory database contains detailed information
on the spatial and temporal extent of historical flood
events (Adhikari et al., 2010). Due to the unavailability of
a comprehensive flood database in Pakistan, we created
our inventory using flood layers for 2010, 2014, and 2022
flood events provided by existing studies and institutions
(see Table 1). By combining these three layers, a new
flood inventory layer was formed, which depicts the char-
acteristics of historical flood events in the study area.
Next, for creating training and validation samples for
modelling, the intersection of layers was performed, and
the final image was taken which filters only those pixels
common in all three flood events. For sampling, a total of
4000 samples were generated using an equally random
stratified technique (Parsons, 2017) ensuring an equal

proportion (i.e., 2000 samples for flood and 2000 for non-
flood locations), which benefits binary classification
models in understanding each class without bias (Kaya &
Gündüz Ö�güdücü, 2018). Then, the samples were divided
into three-to-one ratios (i.e., 67% of samples were used
further for training the models, whereas the remaining
33% were used for testing).

3.2.2 | Flood conditioning factors

While recent studies have used up to 20 flood-influencing
factors (Seydi et al., 2023), they often induce
multi-collinearity and thus induce bias in the model.
Therefore, based on the least correlated variables from the
literature (Pandey et al., 2021; Seleem et al., 2022;
Towfiqul et al., 2021), we used 11 flood-influencing factors
shown in Figure 3. Elevation, which is a main condition-
ing factor for floods, is globally available in different end

FIGURE 2 Methodology flowchart adopted in this study.
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products, each with a 30–90 m spatial resolution. Four var-
iables were derived from elevation, including aspect, slope,
curvature, and topographic wetness index (TWI)
(Towfiqul et al., 2021). The aspect shows the direction of
the slope, with values ranging between 0 and 360 (clock-
wise). The aspect values 0, 90, 190, and 270 represent
north, east, south, and west, respectively. The slope is the
measure of the steepness of a ground surface and is calcu-
lated from DEM in either degree or percentage units. Cur-
vature, (also known as profile curvature) is a quantity
parallel to the direction of the maximum slope and indi-
cates the acceleration and deceleration of flow through the
surface. TWI is an index quantity that highlights the
terrain-induced variations in soil moisture properties.

For meteorological factors, we used daily precipitation
between 2010 and 2022 from CHIRPS and prepared two
variables, namely frequency of rainfall (greater than
10 mm), and maximum precipitation. For frequency of
precipitation, Google Earth Engine (GEE) was used, and a
total of 49 events were recorded in the study area. The fre-
quency of the precipitation dataset was then downscaled
to 30 m spatial resolution using a 4 by 4 majority filtering
resampling technique.4 The maximum precipitation image
was also first processed in GEE and was then exported
into local ArcGIS Pro5 workflow, where it was downscaled
to 30 m using the Bayesian kriging regression prediction
(EBKRP) technique, which involves using elevation data
to downscale precipitation (Ali et al., 2021). For anthropo-
genic factors, the normalised difference vegetation index
(NDVI) was prepared using the Landsat-9 dataset for the
year 2022, whereas the distance to major roads raster was
prepared using Euclidian distance (Waleed, Sajjad,

Acheampong, & Alam, 2023). Besides these, the distance
to rivers and drainage was also prepared using Euclidian
distance, at 30 m spatial resolution.

3.2.3 | Data preparation and preprocessing
for flood variables

Data conversion and overview of machine learning
models
For ML modelling using remotely sensed data, the con-
ventional data is reshaped into a numerical 2D array,
organising it to represent spatial and spectral dimensions
(Fang et al., 2021). Before that, it is important to trans-
form and normalise the data to make it utilisation-ready
in ML models (Ali et al., 2021; Ha et al., 2021). Details on
these steps are provided in the following sections.

Log transformation of the data
Log transformation is the widely used data processing
technique in ML and is defined as the process of trans-
forming non-normally distributed data using either a nat-
ural logarithm or a logarithm with a specific base to the
data (Ha et al., 2021). However, since the logarithm can
be applied to only positive values and specific data, such
as NDVI, can contain negative values, a scaling factor is
often added to the equation to make values positive
(Seleem et al., 2022). The overall equation used to per-
form log transformation is provided as Equation (1).

y0¼ ∂� log xþδð Þ, ð1Þ

where y0 represents the transformed value, ∂ represents
the scaling factor applied, x represents the original value,
and lastly, δ represents the constant value added.

Feature normalisation
Normalisation is a crucial data processing technique in
ML modelling that adjusts values to a standard scale.
This step is essential because certain models are sensitive
to the scale of input features, yielding better results when
data is normalised. There are two common approaches to
normalisation based on data distribution: positive nor-
malisation and negative normalisation.

Positive normalisation scales data to a specific range,
typically between 0 and 1, which is useful when the abso-
lute values or relative magnitudes of features are impor-
tant. Conversely, negative normalisation, also known as
z-score normalisation, transforms data to have a mean of
0 and a standard deviation of 1. This method is advanta-
geous when the distribution shape or presence of outliers
are significant factors, as it centres the data and equalises
the scales of different features. The equations for positive

TABLE 1 Datasets used in this study and their source

information.

Dataset name
Resolution
(year)/type Justification

Drainage Shapefile Lehner and Grill
(2013)

Elevation 30 m (2022) Hawker et al. (2022)

Flood layers (2010
and 2014)

Shapefile www.unitar.orga

Flood layer 2022 Shapefile Akhtar et al. (2023)

Land-use 10 m (2020) Karra et al. (2021)

CHIRPS rainfall 5.5 km (2010–
2022)

Funk et al. (2015)

River boundary Shapefile Lehner and Grill
(2013)

aFlood Layers (2010 and 2014) Shapefile data provided by UNITAR upon
personal request. Researchers can visit www.unitar.org and email them to
request access to the data.
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and negative normalisation are provided as Equations (2)
and (3), respectively.

γ1¼ x�min xð Þ
max xð Þ�min xð Þ

� �
, ð2Þ

where γ1 represents the positive normalised value, x is
the original value in the data, min(x) is the minimum
value in the data, and lastly, max(x) is the maximum
value in the data.

γ2¼ max xð Þ� x
max xð Þ�min xð Þ

� �
, ð3Þ

where γ2 represents the normalisation of negatively con-
tributing conditioning factors, x is the original value, max
(x), and min(x) are the same as Equation (2).

While normalisation transforms values on a standard
scale, it does not address data skewness or the influence
of extreme values effectively. Log transformation helps in
reducing the influence of outliers and makes the data
more symmetrical, thereby improving the model's perfor-
mance and stability (Ha et al., 2021). Normalisation alone
is often insufficient because it can leave highly variable
data skewed, impacting the accuracy and interpretability
of ML models. By combining log transformation with
normalisation, we achieve a more robust data

FIGURE 3 Flood influencing factors used for flood susceptibility mapping (FSM).
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preprocessing pipeline that enhances the overall model
effectiveness (Ali et al., 2021).

Figure 4a shows the flow of data conversion, where
11 features in “Geotiff” format are first converted into 1D

array format using the NumPy python package.6 Then,
the NumPy array is reshaped into 2D, where rows depict
values and columns represent bands (features). This
reshaped NumPy array is then saved locally using

FIGURE 4 (a) Overview of features data conversion, and (b) categorisation of different machine learning (ML) models utilised in this study.
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NumPy native compressed format. The benefit of saving
in NumPy-based compressed format includes a reduction
in file size (979 MB to 647 Mb), faster loading and proces-
sing speed, and minimum chances of processing errors
(i.e., due to Python package conflicts). The resulting 2D
structure captures spatial distribution and facilitates effi-
cient analysis by assigning pixel values to their corre-
sponding array positions. Furthermore, layers are stacked
for multiple features to create one 2D data cube, which
can be used further for model training and prediction.

Since FSM is a classification probability problem, we
focused on all supervised ML models. First, six different
categories of ML classification models were prepared
based in Scikit-Learn,7 namely decision trees, nearest
neighbour, Naïve bayes, neural networks, ensemble
models, and linear models. For each category, we identi-
fied all available base ML models, which could generate
classification probabilities. As a result, 14 different ML
models were identified and further used for FSM. The
overall model overview and individual model names are
shown in Figure 4b.

3.3 | ML model validation

Conventionally, ML model validation is performed using
multiple accuracy metrics that depict the model's perfor-
mance regarding true and false identified labels. To con-
duct a comprehensive validation, we employed all
available accuracy metrics, including overall accuracy,
precision, recall, F1 score, Jaccard score, net log loss,
receiver operating characteristic (ROC) curve, and area
under the curve (AUC). This extensive validation process
assessed the reliability and predictive capabilities of the
ML models, ensuring the accuracy of FSM. The details of
each metric are provided in Table 2.

4 | RESULTS

4.1 | Models validation

The results of the accuracy assessment of ML models are
presented in three parts. In the first part, the distribution
of accuracy assessment metrics is provided (Figure 5).
Among all models, LGBM and XGBoost take first and
second places, respectively. Among these two models,
LGBM performs better in terms of accuracy (�0.84),
whereas XGBoost performs better in terms of scalability
measured by prediction time (18 s). Recent studies pro-
pose an adjusted accuracy method for assessing the effec-
tiveness of models (Ali et al., 2021). In adjusted accuracy,
all possible accuracy metrics for the model are evaluated,

and then their mean value is taken. The resulting
adjusted accuracy based on the previous 11 accuracy met-
rics is shown in Figure 5b, which ranks LGBM and
XGBoost at the top first position, while Gradient Boosting
and Bagging at second and third position, respectively.
Notably, the popular model random forest (RF), widely
used in previous studies, showed satisfactory accuracy
(F1s = 0.83, adjusted accuracy = 0.79) but showed poor
scalability with a prediction time of up to 31 s.

Lastly, when evaluating the mean adjusted accuracy,
it is crucial to document the variation in the range of
accuracy metrics values and highlight potential outliers,
as presented in Figure 5c. It is evident that the density of
most of the models, including LGBM and XGBoost, is
shifted towards the right indicating overall better perfor-
mance. Moreover, except for decision tree, and Gus-
sainNB models, all models showed sustained
performance with a minimum value greater than 0.5.

To document correctly classified and misclassified
samples, a confusion matrix (Figure 6) is used to observe
the underfitting and overfitting of the ML model
(Waleed & Sajjad, 2022). Among all models, GaussianNB,
LGBM, Gradient Boosting, and Decision Tree attained
the highest true positive (TP) values of 45.9%, 43.79%,
43.33%, and 43.33%, respectively, indicating a good agree-
ment between actual and predicted flood points. How-
ever, decision tree and GaussianNB showed high false
positive (FP) values, indicating overfitting of models
resulting in overestimation. Lastly, minimum FP and
false negative (FN) values are observed in the XGBoost,
LGBM, and RF models, indicating their superiority over
other models in handling overfitting, overestimation, and
misclassification.

The ROC and AUC are widely used to assess the
effectiveness of binary ML models and for in-depth com-
parison of various models. The ROC summarises the
trade-off between the TP rate and FP rate, considering
multiple classification thresholds, also known as the fold
or K-fold validation process. It also provides the perfect
balance between precision and recall, emphasising the
overall predicting power of a model given the variation in
training data. The AUC value is used to compare the
models, which is the mean value of all the ROC epochs.
The AUC-based model comparison is a standardised
approach, and generally, the model with higher AUC can
better discriminate and predict the label class (Seleem
et al., 2022). Among all the models, LGBM, XGBoost, RF,
and Gradient Boosting performed better (Figure 7). Each
model demonstrated a mean AUC value of 0.84, with the
highest AUC recorded at 0.99 and the lowest at 0.59.

The similarity in the mean AUC values across these
four models suggests that all of them exhibit comparable
performance levels when prioritising accuracy.
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Additionally, these models consistently outperformed sim-
ilar models regarding classification accuracy. Notably, the
highest AUC of between 0.97 and 0.99 achieved by all four
models (LGBM, XGBoost, RF, and gradient boosting) indi-
cates their exceptional discriminatory power and ability to
distinguish between flood and non-flood classes effectively.
Therefore, these findings highlight the competitive perfor-
mance of the LGBM, XGBoost, RF, and gradient boosting
models, affirming their suitability for the FSM task.

4.2 | Comparison of machine learning
models

To enhance the clarity and facilitate comparative analysis
of the ML models evaluated in this study, we have

summarised the advantages and disadvantages of each
model based on accuracy assessment findings. This com-
prehensive overview helps in understanding the strengths
and limitations of each model in the context of FSM and
is provided as Table 3.

4.3 | Dominant factors controlling flood
susceptibility

Correlation analysis is performed to assess the multicolli-
nearity between features, which is given in Figure 8a. No
multicollinearity is observed between variables given the
upper and lower correlation threshold of �0.75 to 0.75,
respectively. Furthermore, the only highest correlation of
0.7 is observed between rainfall frequency (rfreq) and

TABLE 2 Details of accuracy assessment metrics used in this study.

Name Description Equation Justification

Accuracy Also known as overall accuracy measures the
proportion of correctly classified instances in relation
to the total number of instances. It provides a high-
level assessment of the model's predictive accuracy
and its ability to classify areas correctly

Accuracy¼ TPþTN
TPþTNþFPþFN

Olofsson
et al. (2014)

F1-score Based on precision and recall, it evaluates both false
positives and false negatives and thus provides a
balanced evaluation of model performance

F1s¼ Precision�Recall
PrecisionþRecall

Waleed and
Sajjad (2022)

Jaccard
score

It calculates the ratio of the intersection between the
predicted and actual flood-prone areas to their union

Js¼ TP
TPþFN

Maxwell
et al. (2021)

Net log
loss

Net log loss is a probabilistic measure that assesses the
model's ability to estimate the likelihood of flood
occurrence. It calculates the logarithmic loss of
predicted probabilities compared to the true
probabilities, penalising inaccurate predictions. A
lower net log loss indicates better predictive
performance

NLL¼� 1
N�

P
y� log pð Þþ 1�yð Þ� log 1�pð Þ½ � Gao et al.

(2022)

Precision Precision is the ratio of correctly classified flood-prone
areas to the total number of areas classified as flood-
prone. It indicates the model's ability to minimise false
positives, ensuring that areas classified as flood-prone
are indeed at risk

Precision¼ TP
TPþFP

Waleed,
Sajjad,
Shazil, et al.
(2023)

Recall Recall, also known as sensitivity or true positive rate,
represents the proportion of correctly classified flood-
prone areas to the total number of actual flood-prone
areas. It measures the model's ability to detect and
capture all areas that are truly at risk

Recall¼ TP
TPþFN

Waleed,
Sajjad,
Shazil, et al.
(2023)

ROC and
AUC

ROC and AUC analysis evaluate the model's ability to
discriminate between flood-prone and non-
flood-prone areas across different classification
thresholds. It comprehensively assesses the model's
performance at various probability cutoffs

The ROC curve is constructed by plotting the true
positive rate (TPR) against the false positive rate
(FPR) at different classification thresholds

Seleem et al.
(2022)

Abbreviations: FP, false positives (incorrectly predicted flood-prone areas); FN, false negatives (incorrectly predicted non-flood-prone areas), N, total number of

instances; p, predicted probability; TP, true positives (correctly predicted flood-prone areas); TN, true negatives (correctly predicted non-flood-prone areas); y,
true label (0 or 1).
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maximum rainfall (rmax), which is reasonable given that
both variables highly contribute to the variation in flood
occurrence (Seleem et al., 2022).

Figure 8b, c shows the feature influence force plot
and feature importance ranking, respectively, estimated
with the SHapley Additive exPlanations (SHAP) method
(Lundberg & Lee, 2017), and using the highest accurate
LGBM model. The SHAP is a theoretical framework
that explains various variables' role in ML training and

output prediction by taking the average marginal con-
tribution of each feature associated with all available
coalitions. Figure 8b shows the feature influence force
plot, in which the base value of 0.5 (50% susceptibility,
in the absence of any feature) is indicated based on the
average of prediction in the training dataset. The higher
values (in red) highlight a direct influence of variable
on the training model (i.e., slope with a value of 0.9
corresponds to red colour indicating that slope has a

FIGURE 5 Accuracy assessment of FSM models. (a) Accuracy metrics for all models, using 11 accuracy metrics. (b) Adjusted accuracy

based on an average of all accuracy metrics, and (c) Boxplot showing the distribution of adjusted accuracy. (a) A bar plot of individual

accuracy metrics for each model, (b) the adjusted accuracy based on the mean of each metric, and lastly, (c) the violin plot for the

distribution of adjusted accuracy for each model. (a) Is sorted based on the F1s.
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higher influence in flood susceptibility). Similarly, blue
values on the right show lower influence features, with
the width of the bar showing the intensity at which fea-
tures change the output model. Among lesser influenc-
ing features, NDVI, rfreq, rmax, dtriver, and dtroad
illustrate an inverse relationship with flood probabilities
(i.e., the increase in value of these features reduces the
FS probability).

Lastly, Figure 8c shows a feature importance ranking
plot, in which the Y-axis shows the most important fea-
tures for model prediction (output) in descending order
whereas the X-axis shows model impact and colour sig-
nifies the intensity of feature value. Among all features,
rfreq being on the top signifies being the highest influenc-
ing feature for FS prediction. Specifically, the blue values of
rfreq on the right side show that the lower (negative)

FIGURE 6 Confusion matrix for each ML model. In each confusion matrix, the left horizontal rows show the actual percentage of

samples, whereas the bottom vertical columns show the predicted percentage of samples. The top left section in the matrix indicates the

correct classified non-flood pixels and is called true negative (TN). The top right section shows the incorrect classified non-flood class into

flood class and is called false positive (FP). Similarly, the bottom left, and right sections show false negative (FN) and true positive

(TP) values, respectively.
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values of rainfall frequency have a high impact on model
output. Similar to Figure 8b, the slope feature stood second,
with the majority of values as red on the right side indicat-
ing that a higher slope directly influences the model.

4.4 | Geographical disparities in flood
susceptibility

Figure 9 shows FS maps for each model, in which values
near 0 (light purple colour) indicate no or minimal FS

level whereas values near 1 (dark purple) signified a high
FS level. In general, all FS maps follow the same spatial
trends (i.e., the northern area being the high flood-
susceptible region) except for Gaussian NB, which shows
overestimation (also evident in Figure 6). Among the
highly accurate four ML models, LGBM and XGBoost fol-
low similar spatial patterns of having western and north-
ern regions indicated as highly susceptible, whereas RF
and Gradient tree-based maps show slight underestima-
tion in south-east regions. Except for LGBM, other
models in the Linear Models category (Figure 4) showed

FIGURE 7 Receiver operating characteristic (ROC) curve and area under the curve (AUC) plots for each model. Here, the blue line

indicates mean ROC, the grey background indicates ±1 standard deviation, the dashed line indicates chance level with AUC of 0.5, and the

coloured lines indicate ROC of 10 epochs.
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the road, and drainage network as the least susceptible
regions and the network is visible in Figure 9. Lastly,
some models including decision tree, K-nearest neigh-
bour, and bagging showed underestimation and did not
follow the patterns of the highly accurate flood models.
The FS results indicate that the whole region is highly
susceptible to flood, with Shikarpur and Jacobabad being
the highest affected. Comparatively, Jacobabad is more
flood-susceptible than Shikarpur. The cities epicentre of
Jacobabad, Shikarpur, and Larkana fall into high FS
regions, indicating larger flood impacts.

4.5 | Deployment of the most
optimal model

To access the variation in FS for each city in the context
of the utilisation of the outcomes for policy and decision-
making through the practice of the highest-ranking ML
algorithm, we assess the state of FS for key populated
regions in the study area. Violin plots are prepared based
on the most accurate (LGBM) algorithm, and data inside
a 7 Km2 buffer around the population centre point of
each city. Figure 10 shows the population density map
with city buffers, along with three violin plots for Jacoba-
bad, Larkana, and Shikarpur. It is observed that both Lar-
kana and Shikarpur showed average FS of 0.9 indicating
that most of the population falls under extreme flood sus-
ceptible region. For Jacobabad however, the average FS
equals 0.65, and the distribution of FS values is between
0.85 and 1. This shows that while the average FS is far
lesser than the other two cities, the distribution of values
near 1 indicates that the majority of the population in
this city also falls under a higher FS zone. Such targeted
information is useful as well as important to devise effec-
tive risk mitigation policies in the face of intensifying
floods in Pakistan in particular and in other parts of the
world in general.

5 | DISCUSSION

Comparative performance evaluation of ML models for
FSM is a critical topic, which ensures the effectiveness
and reliability of derived FS maps. Recently, some studies
(Dodangeh et al., 2020; Fang et al., 2021; Luu et al., 2021;
Pandey et al., 2021; Pham et al., 2021; Seydi et al., 2023;
Towfiqul et al., 2021) performed a comparative analysis
of few ML models, however, most of them cannot provide
an in-depth comparison. Furthermore, the authenticity
and accuracy of the majority of these studies are ques-
tionable as many neglect crucial ML analysis stages
(i.e., multicollinearity analysis, appropriate sampling

TABLE 3 Summary table showing the advantages and

disadvantages of ML models for FSM based on accuracy

assessment.

Model Advantages Disadvantages

LGBM Highest F1 score
(0.846), highest
accuracy (0.841), fast
training and
prediction (22 s)

Sensitive to overfitting,
requires careful
parameter tuning

XGBoost High F1 score (0.835),
high accuracy (0.832),
fast prediction time
(18 s)

Computationally
intensive, slower with
very large datasets

Random
forest

High F1 score (0.832),
high precision (0.818)

Requires more
computational
resources, high
prediction time (31 s)

Gradient
boosting

High F1 score (0.831),
robust accuracy
(0.824)

Computationally
intensive, sensitive to
overfitting

Extra trees High F1 score (0.830),
high recall (0.850)

High negative log loss
(6.335), slower
prediction
time (32 s)

Bagging High F1 score (0.807),
balanced accuracy
(0.804)

High negative log loss
(7.045), slower
prediction time (32 s)

MLP Good F1 score (0.799),
high recall (0.829)

High negative log loss
(7.591), slow
prediction time (23 s)

K-nearest
neighbour

Good F1 score (0.799),
effective recall (0.811)

High prediction time
(51 s), sensitive to
irrelevant features

Decision
tree

Good recall (0.856),
fast training

Prone to overfitting,
lower accuracy
(0.760)

SVM Robust to overfitting,
effective recall (0.811)

High memory and
computational power
requirement, high
prediction time (39 s)

Ridge Prevents overfitting,
balanced accuracy
(0.753)

Requires feature
scaling, moderate
performance

Logistic
regression

Fast training and
prediction (13 s), good
F1 score (0.757)

Assumes linear
relationships, less
effective with
complex data
structures

SGD Prevents overfitting,
balanced accuracy
(0.759)

Requires feature
scaling, moderate
performance

GaussianNB Fast and efficient,
high recall (0.907)

Assumes feature
independence, lower
accuracy (0.680)
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approach, comprehensive accuracy metrics for validation,
choice of features, transferability assessment, scalability
assessment, and lastly the selection of models) (Amiri
et al., 2024; Kumar & Singh, 2024; Shah & Ai, 2024).
Additionally, there has been a recent shift in studies
focusing on the ML model transferability. In this context,
this study systematically compared all available ML
models and provides an overview of scalability perfor-
mance among ML models. This provides us with a base
for scaling the FS analysis to a larger geographical scale
(i.e., a national or a regional scale).

The findings of this study revealed that the recently
proposed models such as LGBM and XGBoost performed
far better than simplified versions of base models such as
decision tree, random forest, and SVM. Specifically, for
accuracy assessment, both LGBM, and XGBoost attained
an adjusted accuracy of 0.93, and a mean ROC of 0.84;
higher than the rest of the models (Figures 5b and 7). This
performance boost can be attributed to their better optimi-
sation framework, as LGBM uses histogram-based algo-
rithms, whereas XGBoost uses a pre-sort-based algorithm
mechanism for model optimisation (Al Daoud, 2019).
These mechanisms of optimisations allow these two
models to be efficient in terms of faster training, reduction
in memory usage, better accuracy, reduced cost for

distribution learning, support for Graphical Processing
Unit learning, and lastly capability of handling large-scale
data. In terms of scalability, the prediction time of LGBM
(22 s) and XGBoost (18 s) is comparatively better than the
most prominent models in the literature (i.e., RF (31 s)
and SVM (39 s)—Figure 5a). Thus, these qualities make
LGBM and XGBoost preferable for FSM, especially for
scalability (i.e., extending the current FS analysis to a
larger scale). In terms of reliability, Figure 6 demonstrates
a confusion matrix which again confirms the minimum
FP and FN values make LGBM and XGBoost superior
then others in terms of handling overfitting, overestima-
tion, and misclassification.

Previously some studies have evaluated the perfor-
mance of ML models in FSM. For instance, Seydi et al.
(2023) proposed an ML model based on the Cascade For-
est Model. While they compared the results of this model
with six other models (SVM, CART, DNN, LGBM,
XGBoost, and CatBoost), they failed to justify the inter-
comparison and trade-off between accuracy, transferabil-
ity, and scalability. For instance, they use 17 feature
variables derived from DEM, which could affect the
model due to induced multicollinearity. For binary classi-
fication, a balanced dataset of labels is required, which
ensures the balance in validation, whereas their study

FIGURE 8 (a) Correlation matrix for all available variables, (b) feature importance in training the ML model, (c) feature influence in

predicting output.
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FIGURE 9 FSM maps based on the ML models assessed in this study.
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just like others, used a higher number of samples for
flood class than others. For collection samples, most of
the studies generate samples randomly without a sam-
pling approach, which could create bias in model train-
ing and validation. To avoid this, we recommend using a
random stratified samples approach with a custom mini-
mum distance per sample, which not only ensures bal-
anced sampling per class but also avoids sample
clustering and thus, reduces end model bias. Further-
more, for correlation and feature importance, our study
proposed employing the SHAP method, to assess the
importance of each variable in both model training and
model output prediction. This evaluation of feature
importance at both stages is particularly helpful not only
in model optimisation but also in highlighting the key
features that are significant in flood risk management
(Pradhan et al., 2023).

Recently, Hawker et al. (2022) recently proposed an
improved version of the DEM product using a ML
approach combined with the Copernicus Digital Eleva-
tion Model (CopDEM30) dataset, Light Detection and
Ranging data from 12 countries, and ground-truth eleva-
tion data from 100 locations around the world for valida-
tion. They conclude that the dense vegetation-induced
effect can severely affect the end product, and thus

depending on the application will have biased results.
Instead, they proposed an improved version of the DEM
product with such artefacts removed, which showed
promising results. Therefore, in our study, we utilised
Hawker et al.'s (2022) provided DEM dataset, which
showed greater details at 30 m resolution as compared to
previously used.

5.1 | Limitations and the way forward

While our study provided a comprehensive comparative
scholarship on the state-of-the-art ML models, it is imper-
ative to discuss limitations faced during the execution of
this research. First, the lack of high-resolution datasets
on a large scale makes it difficult to conduct similar com-
parative evaluations of ML models at different resolu-
tions and locations. For instance, developed countries
have the resources to create and host databases of high-
resolution remote sensing (i.e., elevation from point
cloud data (drones) and in situ datasets) (e.g., rain gauge-
based rainfall measurements). This assists in providing
high-resolution flood maps. Conversely, developing coun-
tries (especially Southeast Asian countries, such as
Pakistan) lack such resources, hindering detailed

FIGURE 10 Flood susceptibility distribution in the population of each city, based on the LGBM model. The violin plots show the

distribution of flood susceptibility and average flood susceptibility.
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assessment. Hence, the only viable solution is to prepro-
cess the available data and rely on global/regional prod-
ucts (i.e., elevation (30 m) and rainfall (250 km)). No
doubt that doing so might induce unexpected bias in
modelling due to poor data quality to a certain extent.
Therefore, based on this, we believe that the overall
model evaluation and comparisons can be greatly
improved by incorporating high-resolution datasets espe-
cially those which can substitute currently available
coarser products using the similar approach as
adopted here.

Additionally, FSM requires high computational
requirements due to the extensive interconnected rela-
tionship of flood influencing features, the ML model
architecture, and the size of data to analyse. Hence, fur-
ther advancements in terms of robustness are a potential
domain to focus on. While the main objective of this
study was to provide a comparative assessment of ML
models in the context of efficient FSM, the comparison of
all models at larger regions (national or global) can fur-
ther be explored, which could provide greater insights
into the response of models in different geographical and
climate regions at different scales.

Based on this study, future studies can utilise LGBM
or XGBoost, to scale up FSM to a national scale, which
could better assist in emergency preparedness and
improve the effectiveness of flood management strate-
gies and responses by identifying high-risk areas. The
integration of updated remote sensing data into our
framework would provide progressive opportunities for
this. Such an integration coupled with field observa-
tions and sensors' data can further assist in building
real-time monitoring systems and warning mechanisms
in high FS regions. Furthermore, other than the data-
sets used in this study, future studies can investigate
the integration of socio-economic factors and
community-based knowledge into FSM. For instance,
the incorporation of climate projections and anthropo-
genic activities' simulations under the projected climate
scenarios, shared socio-economic pathways, and repre-
sentative concentration pathways (RCP) can be used to
provide further useful insights to reduce FS in the
future. Furthermore, employing the highest-ranked ML
models at higher resolution can also support developing
interactive dashboards and decision support systems
using open-source platforms (i.e., GEE), which can
increase community engagement and capacity building
enabling collective efforts to enhance disaster resilience.
Finally, the results can further assist in developing
future policies and decisions by focusing on the pro-
vided most optimal FSM ML algorithm. This will ulti-
mately result in informed risk planning and adaptation,
particularly in high-susceptibility zones.

6 | CONCLUSIONS

This study compared all relevant (14) ML models in
terms of their reliability through accuracy assessment,
and their scalability through prediction time over
three cities of Sindh Pakistan, namely Shikarpur, Jaco-
babad, and Larkana—regions most affected in the
recent floods of 2022. The results of this study demon-
strate that accuracy-wise, LGBM and XGBoost stood at
the top with adjusted accuracy of 0.93, and F1-score of
0.84 and 0.83, respectively. The estimated ROC and
AUC rank LGBM, XGBoost, Random Forest, and gra-
dient boosting algorithm at the top, each with a mean
AUC of 0.84. In terms of scalability, XGBoost per-
formed better with a prediction time of �18 s com-
pared to LGBM (22 s) and RF (31 s). Moving forward,
we incorporate the explainable artificial intelligence
(eAI) technique to provide insights into the impor-
tance of several flood conditioning factors in FS. This
aspect adds an additional layer of interpretability to
our results, making them more accessible and action-
able for policymakers and stakeholders involved in
flood risk management. This study presents compel-
ling evidence of the accuracy and performance of ML
models, with LGBM and XGBoost standing out as top
performers, which can be adopted by the provincial
and national disaster management authorities. Addi-
tionally, we highlight the scalability aspect, where
XGBoost demonstrates superior prediction time, mak-
ing it suitable for areas with computational
constraints—reflecting the broader applicability of our
work. Importantly, the evaluation framework pre-
sented in this study can be employed to prioritise and
select the most optimal ML algorithm according to any
specific region given that the FS is an in situ challenge
and should be treated accordingly. The resultant reli-
able and accurate FS information based on the most
optimal model could better inform decisions and pol-
icy production to cope with increasing flood risks in
the future.
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6 numpy.org
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