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A B S T R A C T   

While carbon sequestration is significant to achieve the net zero and plays an important role in climate change 
mitigation, urbanization-led land use land cover (LULC) changes are causing significant impacts on the carbon 
stocks of terrestrial ecosystems. Despite rapid urbanization in Pakistan, previous studies focus solely on localized 
areas without documenting the influence of urbanization on carbon stock. Hence, insights regarding the carbon 
storage dynamics (CSD) in response to LULC changes become essential to drive informed decisions and policies. 
In this context, we leverage high-resolution (30 m) remote sensing data to evaluate and map the grid-level 
spatial-temporal interactions between urbanization and CSD at the national scale in Pakistan during 
1990–2020. To do so, multi-sensor earth observation data are retrieved and processed using the Google Earth 
Engine and the Integrated Valuation of Ecosystem Services and Tradeoffs models. Our findings indicate that 
urban areas have expanded exponentially (an increase of ~1040%), resulting in reduced carbon storage (a 
decrease of ~ − 5%). Major cities (e.g., Karachi, Lahore, Faisalabad) showed less urban sprawl while emerging 
cities (e.g., Rawalpindi and Peshawar) demonstrated higher urban sprawl, primarily due to shifting patterns from 
rangeland (~47%) and agriculture (~35%) to built-up class. Though some afforestation projects have increased 
forest carbon stocks in the northern region, there is a large north-south spatial heterogeneity in carbon storage 
loss across Pakistan. The presented high-resolution mapping of CSD over the past three decades advances our 
understanding of where and how much urbanization has influenced carbon sequestration, nationally. Consid
ering the results, this study emphasizes the need for policies and management approaches that support sus
tainable urbanization, which does not compromise carbon pools in the country.   

1. Introduction 

Carbon storage dynamics (CSD) play an essential role in the miti
gation of the effects of climate change, and land use land cover (LULC) 
changes are among the key factors that impact carbon storage in 
terrestrial ecosystems. In a world where climate change poses a signif
icant threat, understanding CSD in response to LULC changes is crucial 
to design and developing sustainable land management practices and 
policies. Urbanization as a major contributor to LULC changes is a global 
issue, leading to severe consequences, including overpopulation, food 
security, air and water pollution, global warming, and climate change 
(Kuddus et al., 2020). Due to the lack of maintained urban infrastructure 

and poor land use policies in urban areas, developing countries are 
comparatively more affected than developed nations (Waleed et al., 
2023a). For instance, in 2019, the United Nations estimated that 4.2 
billion people (making up almost half of the world’s total population) 
live in urban areas, and the number is predicted to cross 6 billion by 
2041 (Gu et al., 2021). Under the ongoing climate changes, rapid ur
banization poses serious challenges including complex land use issues, 
reduction in vegetation cover, and deforestation (Chen et al., 2021; Song 
et al., 2020). 

On a larger scale, urbanization-led LULC changes, especially the 
conversion of natural ecosystems to built-up areas, influence carbon 
stocks by compromising the carbon storage capacity of regions (Kuddus 
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et al., 2020). This reduction has multi-scale implications for global 
warming and climate change. Reduced carbon storage in response to 
LULC changes results in increased atmospheric CO2 concentrations, 
which can lead to a larger greenhouse effect—ultimately influencing 
climate change regulation at various scales (i.e., national, regional, and 
global) (Fahad et al., 2021; Zhu et al., 2022). However, the influence of 
LULC change on CSD is a complex issue that prerequisites in-depth 
research and assessment. To provide references for localized decisions 
and resource allocation in the context of land resource management and 
maintaining carbon stocks, such assessments need to be carried out at 
finer spatial resolutions (Chuai et al., 2022; Fan et al., 2022). 

Remote sensing techniques and data have revolutionized our ability 
to monitor and manage the Earth’s natural resources and ecosystem 
services. With the advent of satellite-based remote sensing, it is now 
possible to obtain spatially explicit and timely information on LULC 
changes. These assessments pave the ways to develop integrated meth
odologies and evaluate the impact of LULC on various ecosystem ser
vices including carbon stock (Toru and Kibret, 2019; Waleed and Sajjad, 
2022a). Such assessments provide crucial references to track 
urbanization-induced changes in LULC and how it results in reduced 
carbon storage due to the degradation of natural ecosystems (Luisetti 
et al., 2019; Rimal et al., 2019). Remote sensing-based evaluation of 
carbon stock in various ecosystems, including forests, grasslands, and 
wetlands, allows us to understand the carbon balance and potential 
sources and sinks of greenhouse gases, which are crucial for mitigating 
climate change (Canedoli et al., 2020; Zhang et al., 2015). However, 
supporting national policies requires nationwide comprehensive as
sessments, but with the amount of a petabyte of satellite data required 
for such evaluations, computational capabilities are becoming a 
bottleneck due to large processing requirements. 

Google Earth Engine (GEE) is a cloud computing tool widely used for 
large-scale geospatial analysis. The free-to-use GEE platform provided 
by Google can process petabytes of data within seconds (Mutanga and 
Kumar, 2019). Furthermore, it gives access to a vast data catalog, 
including decades of multi-sensor earth observation archives, enabling 
well-organized time series analysis across a large geographical area 
(Amani et al., 2020). Its flexible programming interface allows users to 
employ pre-defined algorithms or create their own using JavaScript or 
Python (Waleed and Sajjad, 2022b). Additionally, GEE provides pre- 
loaded Machine Learning (ML) models that users can apply to their 
spatial data for various purposes, such as LULC-supervised classification 
(Avci et al., 2023). Recently, Random Forest (RF) has emerged as a 
robust, efficient, and highly accurate ML algorithm for mapping LULC in 
heterogenous landscapes (Waleed and Sajjad, 2022a). Carbon stock 
estimation is conventionally evaluated using various computer models, 
among which the Integrated Valuation of Ecosystem Services and 
Tradeoffs (InVEST®: https://naturalcapitalproject.stanford.edu/softwa 
re/invest) carbon model has gained popularity in recent years (He 
et al., 2016; Li et al., 2022; Piyathilake et al., 2022; Wang et al., 2022). 
The InVEST model uses land cover data and optional biophysical and 
economic factors to assess carbon stocks in various land use classes. As a 
key output, the model helps identify different areas with high carbon 
storage potential and quantify the impact of LULC changes on CSD. 
Furthermore, the outputs are used to map the spatial inconsistencies and 
patterns in CSD to pinpoint the priority intervention areas. 

Pakistan—a nation of ~230 million people—faces several environ
mental challenges, making it the fifth most vulnerable country due to 
climate change and associated threats (Ullah et al., 2022). Recent 
studies reported a higher urbanization rate in Pakistan than in other 
South Asian countries (Abdullah et al., 2019; Waleed and Sajjad, 
2022a), which creates several sustainable development-related chal
lenges for the country. While the country’s contribution to global carbon 
emissions is very low, its emissions have experienced a significant in
crease in the recent two decades. Under this situation, the lack of 
comprehensive research on urbanization and carbon stock, especially at 
a national scale, is a major hindrance to formulating informed policies 

regarding sustainable land management practices as well as carbon 
storage monitoring. Hence, high-resolution mapping of CSD in response 
to LULC change could progressively inform policies, resulting in the 
sustainable development of the country. In this context, an important 
question is that what are the possible opportunities to leverage open 
high-resolution datasets to investigate long-term mapping of carbon 
storage change. Similarly, other important questions are “how land use 
and land cover change are influencing the carbon storage capacity at 
national scales?” and “are there any geographical disparities in LULC- 
induced change in carbon storage that can be identified via high- 
resolution remote-sensing data. The availability of global high- 
resolution datasets and cloud computing-based GEE platform opens 
doors to exciting possibilities, (i.e., high resolution mapping of land 
cover at national level and its influence on carbon storage), which can 
progressively assist in answering these questions. Therefore, the present 
study leverages cloud computational capabilities and open access sat
ellite dataset, spectral indices, and InVEST carbon model to assess and 
map LULC patterns and their impact on CSD in Pakistan during the past 
three decades (1990–2020). While the results of this study will provide 
valuable insights regarding the impacts of LULC change on carbon 
stocks, the high-resolution mapping (30 m spatial resolution) will help 
devise targeted strategies for carbon sink preservation through sus
tainable land use practices. Also, the findings and produced fine-scale 
mapping along with the development of the first high-resolution na
tionally consistent LULC and CSD database could be used for further 
evaluations in this research domain and beyond—acting as a baseline. 

2. Methodology 

2.1. Study area 

Developing countries lack assessment of CSD due to limited financial 
resources, technological capacity, and institutional expertise. Among 
developing countries, Pakistan (Fig. 1a) surpasses others, due to its 
special geographical location, rising population, climate change effects, 
and disaster vulnerability levels (Akhtar et al., 2023; Sajjad et al., 2023). 
In Pakistan, the energy sector (60%), agriculture (20%), and industry 
(20%) are the primary emission sources of GHGs, with the energy sector 
being the highest due to the country’s reliance on non-sustainable en
ergy sources including coal, oil, and gas primarily for power generation 
(UNFCCC, G, 2021). On the contrary, the agriculture and industry sec
tors are the second and third largest sources of GHGs emissions due to 
the extensive use of fertilizers and transportation respectively. Pakistan 
has experienced a steady increase in carbon emissions, primarily driven 
by its dependence on fossil fuels in energy production and transportation 
(shown in Fig. 1b, and d). While carbon emissions are inevitable, they 
are being balanced with different ecosystem services available in the 
country. For instance, Pakistan possesses the potential to function as a 
carbon sink through its expansive forests and ecosystems capable of 
sequestering carbon dioxide. However, deforestation, climate change, 
and other factors pose threats to Pakistan’s carbon sinks, as the rapid 
clearance of forests releases carbon dioxide into the atmosphere, 
diminishing the country’s capacity for carbon absorption (Mannan et al., 
2018). Therefore, comprehensive national-scale studies focusing on 
historical and current carbon storage status are needed to provide a 
baseline understanding of the carbon sequestration potential and trends, 
enabling effective climate change mitigation strategies and informed 
decision-making on sustainable land management practices. 

While CSD assessment studies at a national scale are crucial as they 
provide a holistic and comprehensive understanding of a country’s 
carbon emissions, they often require much higher computational power 
(Zhu et al., 2022). Pakistan has an area of 796,095 km2, which creates 
hurdles for national scale analysis due to large processing requirements. 
To counter this, a recent study by Naboureh et al. (2023) proposed 
dividing the study area into strata zones based on the Köppen Geiger 
climate classification system. Following that, the area of Pakistan was 
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divided into six zones shown in Fig. 1c. The Köppen system divides the 
areas based on vegetation, temperature, and precipitation patterns, 
resulting in homogenous area zones (Peel et al., 2007). 

2.2. Data acquisition and preparation 

The study is conducted in several steps including data acquisition 
and preprocessing, collecting reference data, machine learning model
ling, post-processing, high-resolution LULC mapping, LULC change 
detection and transitions, and the influence of LULC changes on carbon 
storage during 1990–2020. In the first stage of data acquisition and 
preprocessing we filtered Landsat-5 Thematic Mapper (TM) tier-1 Sur
face Reflectance (SR) and Landsat-8 Operational Land Imager (OLI) and 
Thermal Infrared Sensor (TIRS) tier-1 SR data from the GEE data cata
logues in the form of an image collection. As LULC change is a slow 
process (Waleed and Sajjad, 2022a), we divided our analysis into four 
distinct periods, specifically 1990, 2000, 2010, and 2020. To obtain the 
necessary data for our study, we used multi-source data including 
Landsat-5 TM tier-1 SR data for 1990, 2000, and 2010, and Landsat-8 

OLI tier-1 SR data for 2020. We avoided using Landsat-7 data for 
2000 and 2010 due to scan-line errors after 2003 (Scaramuzza and Barsi, 
2005). In addition to the satellite observation-based data, we utilized 
vector data for provincial and district-level boundaries and population 
density. Detailed information regarding the data used in the study, 
including their acquisition dates and sources, is given in Table 1. 

2.2.1. Preprocessing 
After data acquisition, data processing was performed which in

cludes atmospheric corrections, filtering images based on time intervals, 
and taking the best pixels using mean. Atmospheric correction mini
mizes atmospheric disturbances such as haze and cloud cover (Chavez, 
1988). The haze effect is removed by identifying the darkest pixel value 
in each band and subtracting that value from each pixel. For cloud 
removal, the QA_PIXEL band of Landsat (5 and 8) was used to mask any 
pixel identified as a cloud (Shafi et al., 2023). To generate the year 1990 
mosaic, we used Landsat-5 images from 1989 to 1991 with cloud 
coverage of <30%. For the year 2000, and 2010 mosaic, we filter images 
between 1999 and 2001 and 2009 to 2011 respectively, both with <30% 

Fig. 1. (a) Study Area map of Pakistan with population density. The green box highlights the top 20 population-wise cities in Pakistan. (b) Carbon emissions per 
capita, for the top 9 countries between 1990 and 2019. (c) Location of sub-zones based on Koppen-Geiger climate classification system, and Landsat path row 
coverage. Note, Koppen-Geiger-based grid codes are given in brackets, whereas numbers 1–6 represent simplified labels for each zone. Furthermore, the “P” and “R” 
in labels represent the Path and Row of Landsat images, respectively. Lastly (d) Carbon emissions per capita for Pakistan between 1990 and 2019. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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cloud coverage threshold. Lastly, for the 2020 mosaic, we filter images 
from the Landsat-8 image collection between 2019 and 2021. For all 
four mosaics, we filter images with <30% cloud coverage, and then in 
the end, we took mean values for each mosaic to ensure the best pixel 
representation of time series data (Shafizadeh-Moghadam et al., 2021). 
Combining these images using the mean pixel approach can create a 
more complete and accurate representation of the features in different 
zones for a particular year (Waleed and Sajjad, 2022a). This approach 
also reduces the impact of missing data and cloud interference, which 
can be significant sources of error in change detection analysis. The 
overall methodology adopted in this study is illustrated in Fig. 2. 

2.2.2. Feature extraction 
Spectral Indices (SIs) change the conventional multi-spectral data 

into a single image which depicts the enhanced characteristics of a 
phenomenon (Bijeesh and Narasimhamurthy, 2019). They are well 
known because of their noise reduction and feature enhancement ca
pabilities (Xue and Su, 2017). From the literature, the five most common 
SIs were taken which include the Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Built-up Index (NDBI), Enhanced 
Vegetation Index (EVI), and Modified Normalized Difference Water 
Index (MNDWI). Details of these SIs including their equation and 
reference are provided in Table 2. 

2.2.3. Reference data and training 
For model training and testing data, this study used various data 

sources as a reference, including Google Earth images, MCD12Q1.061 
MODIS Land Cover Type Yearly Global, Tsinghua FROM-GLC Year of 
Change to Impervious Surface, JRC Global Surface Water Mapping 
Layers, v1.4, Global Forest Cover Change (GFCC) Tree Cover, and 
GlobCover: Global Land Cover Map product. Details and sources of these 
datasets are provided in Table 1. Along with these datasets, SIs were also 
used to create samples. For sampling, we used a random stratified 
sampling approach to collect approximately 10,000 point samples each 
year (Waleed and Sajjad, 2022a). After creating these samples, they 
were then divided into a 70/30 ratio for training and validation 
respectively. 

2.3. Machine learning-based modelling and post-processing 

Once our training and validation data were finalized, we divided the 
total classification workload of national scale LULC classification into 6 
zones, each zone having an individual RF-based classifier. Each RF 
model was supplied with input imagery along with features including 
SIs, and Digital Elevation Model (DEM). The end output of each model 
was then mosaicked, creating the national scale LULC product for each 
respective year. 

Subsequently, post-processing is carried out, which is a crucial step 
in finalizing end-classification products that involve LULC majority 
filtering, accuracy assessment, and change detection. The majority filter, 
or the 3 × 3 mode filter is used to improve image classification accuracy 
by removing isolated pixels (Stuckens et al., 2000). It investigates the 
values of a small neighbourhood of pixels within the image and then 
replaces the center pixel value with the most frequently occurring value 
in the neighbourhood (Hütt et al., 2020). This helps to remove isolated 
pixels that do not belong to any class and smooth out the image by 
removing small inconsistencies in the classification. This filtering tech
nique was applied to remove unwanted noise and improve the accuracy 
of the classification before the accuracy assessment. For accuracy 
assessment, precision, recall, and F1-Score (F1s) matrices were used to 
evaluate the end performance of the classification product (Waleed and 
Sajjad, 2022a). These matrices help to assess the accuracy of the clas
sifier by determining True Positive (TP) rate, True Negative (TN) rate, 
False Positive (FP) rate, and False Negative (FN) rate (Zhou and Jing, 
2022). The terms precision and recall are often used to define the end 
accuracy metric. Precision is the ratio of correctly classified instances 
(TP) and the total instances that the model classifies (TP+ FP) and is 
given as Eq. (1). 

Precision =
TP

TP + FP
(1) 

The recall is the ratio of correctly classified instances (TP) and the 
total positive instances present in the data (TP+ FP). The model can 
correctly detect positive instances and is given as Eq. (2). 

Recall =
TP

TP + FN
(2) 

F1s is the measure of the overall performance of the model. It con
siders both precision and recall and is given by Eq. (3). 

F1s = 2×
(Precision × Recall)
(Precision + Recall)

(3) 

Other than these accuracy assessment techniques, a confusion matrix 
is also generated to compare the predicted class labels with the true class 
labels. A confusion matrix is a table that shows the number of true 
classified pixels in a diagonal, along with false classified pixels corre
sponding to each row and column (Waleed et al., 2023b). 

In LULC studies, the last post-processing step is “change detection”. 
Change detection analysis involves the comparison of two or more im
ages at different temporal intervals. Conventionally, change detection 

Table 1 
Details of Datasets used in this study and their sources.  

Name of dataset Resolution Acquisition date Source 

FABDEM (Forest and 
Buildings removed 
Copernicus DEM) 

30 m 2022 https://data.bris.ac. 
uk/data/dataset/25wf 
y0f9ukoge2gs7a5mqp 
q2j7 

Landsat-5 30 m Jan-Aug (1990, 
2000, 2010) 

https://developers. 
google.com/earth-engi 
ne/datasets/catalog/ 
landsat-5 

Landsat-8 30 m Jan-Aug (2020) https://developers. 
google.com/earth-engi 
ne/datasets/catalog/ 
landsat-8 

Administrative 
Boundaries of 
Pakistan – Vector 
Data  

2022 https://data.humdata. 
org/dataset/cod-ab-p 
ak 

Köppen-Geiger 
Climate 
Classification – 
Vector Data  

2020 https://datacatalog. 
worldbank.org/sea 
rch/dataset/0042325 

MCD12Q1.061 
MODIS Land Cover 
Type Yearly Global 

500 m 2000,2010,2020 https://developers.goo 
gle.com/earth-engine/ 
datasets/catalog/ 
MODIS_061_MCD12Q1 

Tsinghua FROM-GLC 
Year of Change to 
Impervious 
Surface 

30 m 1990–2020 https://developers. 
google.com/earth 
-engine/datasets/catal 
og/Tsinghua 
_FROM-GLC_GAIA_v10 

JRC Global Surface 
Water Mapping 
Layers, v1.4 

30 m 1990–2020 https://developers. 
google.com/earth-engi 
ne/datasets/catalog/ 
JRC_GSW1_4 
_GlobalSurfaceWater 

Global Forest Cover 
Change (GFCC) 
Tree Cover 

30 m 2000,2010 https://developers. 
google.com/earth 
-engine/datasets/cata 
log/NASA_ 
MEASURES_GFCC_TC_ 
v3 

GlobCover: Global 
Land Cover Map 

300 m 2009 https://developers. 
google.com/earth-e 
ngine/datasets/cata 
log/ESA_GL 
OBCOVER_L4_20090 
1_200912_V2_3  
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for two image instances is performed by subtracting the initial image 
from the final image (Gong et al., 2022). Change detection also involves 
change transition analysis, which analyzes the flow of change of each 
class in LULC from the initial to the final class over a period (Waleed 
et al., 2023b). In this study, change detection analysis was performed 
using the “change detection wizard” function of ArcGIS Pro V3 software 
(available at: https://www.esri.com/en-us/arcgis/products/arcgis-p 
ro). 

2.4. Carbon storage and its dynamics in response to LULC transitions 

In this study, we utilized the carbon storage and sequestration model 
from the InVEST software suite developed by the Natural Capital Project 
(available at: www.naturalcapitalproject.stanford.edu/software/invest 
/invest-dowloads-data) to assess the total carbon stocks of Pakistan. 
This model is a widely used open-source tool due to its simplicity and 
efficiency. As the model follows the carbon cycle, it provides an inclu
sive estimate of the total carbon stock in the study area by considering 

four carbon pools: Above-ground Carbon (Ca), Below-ground Biomass 
(Cb), Dead Organic Matter (Cd), and Soil Carbon (Cs). The total carbon 
storage is then calculated by aggregating the carbon density of all LULC 
types. The specific equations used to quantify carbons storage, and 
carbon storage per pixel of each LULC type are provided as Eqs. (4) and 
(5) respectively (Kafy et al., 2023; Zhu et al., 2022). To use the InVEST 
carbon model, two initial data inputs are required: LULC data and car
bon density (carbon pools) data of each LULC type. Due to the un
availability of field carbon pool data on a national scale in Pakistan, we 
relied on the literature and acquired the values of different carbon pools 
previously reported in peer-reviewed studies. Ca pool data were ob
tained from the Intergovernmental Pannel on Climate Change (IPCC) 
2006 report (IPCC, 2006), whereas Cb storage values of the LULC types 
containing woody biomass were estimated using the “root to shoot” ratio 
method (Liang et al., 2021; Piyathilake et al., 2022). The details of other 
carbon pools and their source information are provided in Table 3. 

Carbon Storage = Ca+Cb+Cd +Cs (4)  

Carbon Storage (pixel) =
∑n

i=1
Ak ×(Ca+Cb+Cd +CS), (k = 1, 2,…, n)

(5)  

where Ak is the area of the respective land use class. 

3. Results 

3.1. Satellite-derived LULC dynamics 

Ensuring the reliability and accuracy of land use and land cover 
(LULC) classification is crucial to identify errors and uncertainties in the 
mapping process and supports the improvement of future maps 
(Abdullah et al., 2019). The results of the accuracy assessment are 
shown in Fig. 3. It is evident that accuracy assessment shows good 

Fig. 2. Methodology flowchart.  

Table 2 
Details of spectral indices used in this study.  

Name Equation Reference 

Normalized Difference Vegetation 
Index (NDVI) 

NDVI =
NIR − RED
NIR + RED 

(Liu and Huete, 
1995) 

Normalized Difference Built-up Index 
(NDBI) 

NDBI =
SWIR − NIR
SWIR + NIR 

(Zha et al., 2003) 

Enhanced Vegetation Index (EVI) EVI = 2.5×

NIR − RED
NIR + R

+ 1 

(Huete et al., 
2002) 

Modified Normalized Difference 
Water Index (mNDWI) 

MNDWI =

GREEN − SWIR
GREEN + SWIR  

(Xu, 2006)  
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agreement of classification results with F1s results above 0.80 for all 
classes except rangeland and wetlands. For these two classes, the mean 
F1s score is above 0.7 for rangeland, and 0.55 for wetlands, which shows 
their validity. In the case of wetlands, due to the unavailability of 
reference sample points the F1-score is quite low (~0.4) for 1990, 2000, 
and 2020 indicating it should be avoided for certain applications. 
However other classes showed reliable output. For recall and precision, 
scores follow a similar trend as of F1-score with the highest accurate 
classes being built-up, bare land, water, snow, cropland, and forest, and 
the least accurate being rangeland and wetlands. Similarly, the confu
sion matrix (Fig. 3b) shows good agreement between actual and pre
dicted, where rows are actual, and columns are predicted classes. 

Fig. 4a shows the LULC maps for 1990, 2000, 2010, and 2020 
whereas Fig. 4b shows the ribbon chart depicting the percentage share of 
each LULC, class each year. The maps of the LULC classification consist 
of eight classes including built-up, forest, water, wetlands, rangeland, 
cropland, snow, and bare land. Overall, the LULC classification results 
show consistent landscape patterns, with the majority of cropland 
located in Punjab and Sindh province, and most of the forest cover 
located in northern areas each year. The forest cover saw a significant 
increase in its area from 1990 to 2000 but experienced a sharp decline of 
36% by 2010. However, by 2020, it again experienced a rise of 83%. 
Area-wise, between 1990 and 2020 forest class showed an increase in 
area from ~18,589 Km2 in 1990 to ~23,528 Km2 in 2020. The details of 
the area of each LULC class per year in Km2, area percentage distribution 
per year, and area change transition are provided in the supplementary 
file as Table S1, S2, and S3, respectively. 

The cropland area remained relatively stable, with only a 29% in
crease from 1990 to 2020 (from 210,903 Km2 in 1990 to 271,958 Km2 in 
2020. Rangeland showed an unstable trend over the four decades, with a 
slight increase from 1990 to 2000, a decrease by 2010, and a further 
reduction by 2020, resulting in an overall decline of 31% in its area. 
Wetlands also showed an unstable trend with a slight increase in the first 
decade (1990 to 2000), followed by a decrease by 2010. However, by 
2020, there was a significant increase of 147%. Bare land also showed a 
similar pattern, with a slight increase from 1990 to 2000, a decrease by 
2010, and another slight increase by 2020. The water area remained 
relatively stable, with only a slight increase of 37% from 1990 to 2020. 
Among all, the built-up has been the most active class, with a significant 
increase of 1040% from 1990 to 2020, showing the rapid urbanization 
phenomenon in Pakistan. Specifically, the area of built-up class 
increased from 3314 Km2 in 1990 to 37,786 Km2 in 2020, showing a 
tremendous increase. Snow cover also fluctuated, with a slight increase 
from 1990 to 2000, followed by a decrease by 2010, and then a signif
icant increase of 35% by 2020. Notably, two classes, cropland, and bare 

land, remained relatively stable throughout the four decades. Area-wise, 
Fig. 4b shows the percent share of each land-use class each year. From 
Fig. 4b, it is observed that the built-up percent increased rapidly since 
2000; indicating that the era can be regarded as the highest urbanization 
period. The share percentage of cropland and rangeland classes 
increased and decreased respectively in the last decade, while forest, 
wetlands, bareland, water, and snow classes showed fluctuations in their 
share percentage. Notably, the percentage share of cropland increased 
from 18% in 2010 to 23% in 2020, whereas the percentage share of 
rangeland decreased from 33% in 2010 to 22% in 2020. 

3.2. LULC transitions over the past three decades (1990–2020) 

The land use classification analysis of Pakistan for four different 
periods (1990, 2000, 2010, and 2020) revealed significant changes in 
land use patterns. The change transition analysis shown in Fig. 5, pro
vided insights into the conversion of land use classes over time, indi
cating trends such as urbanization, deforestation, and agricultural 
expansion. The inset maps of the top 20 cities provided a more detailed 
picture of the land use changes in these areas, highlighting the intensity 
and spatial distribution of the changes. The results indicate that urban 
areas have expanded significantly over time, at the expense of rangeland 
and cropland areas, particularly in and around the top 20 cities. For 
instance, in the mega-cities, such as Karachi, Lahore, and Faisalabad, 
much of the conversion is from cropland to urban. In Rawalpindi, most 
of the conversion is from rangeland and cropland to built-up. Cities 
including Multan and Hyderabad show the highest spatial extent of 
urban expansion at the expense of cropland. Lastly, Fig. 5 also shows the 
Sankey diagram, which highlights the conversion of different land use 
classes into built-up. From this, it is observed that the largest conversion 
was from rangeland to urban, which accounts for a total of 47% between 
1990 and 2020. Similarly, cropland and barren class showed conversion 
of 35% and 9% between the last 30 years, respectively. 

3.3. Mapping built-up area influx (urban sprawl) between 1990 and 
2020 

The initial LULC classification maps (Fig. 4) indicate that the area of 
built-up class rapidly increases which suggests that there might be many 
cities undergoing high urbanization. To counter this, an urban sprawl 
map is prepared and is depicted in Fig. 6. Similar to Fig. 5, Fig. 6 also 
shows inset maps of the top 20 population-wise cities and visualizes 
their urban growth. The Figure comprises two parts; Fig. 6a with the 
inset maps, while Fig. 6b represents the share percentage of different 
land use classes. From inset maps (Fig. 6a), it is evident that the major 
urbanization occurred in the 1990–2000 period, followed by the 
development in the 2010–2020 period. The mega-cities, including Kar
achi, Lahore, and Faisalabad, showed comparatively lower urban sprawl 
than other cities, such as Peshawar, Multan, and Hyderabad. Among all 
the top 20 cities, higher spatial patterns of urban sprawl are observed for 
Rawalpindi, Peshawar, Hyderabad, and Quetta. Furthermore, in terms 
of recent urbanization, Rawalpindi and Islamabad showed the highest 
spatial patterns in the recent 2010–2020 period. 

3.4. High-resolution grid-level total carbon storage mapping 

Fig. 7a shows carbon storage maps for four different periods (1990, 
2000, 2010, and 2020) at the national scale, generated using the InVEST 
model. The maps reveal significant changes in carbon storage over the 
30 years, with some areas experiencing increases in carbon storage 
while others experiencing decreases. The results suggest that carbon 
storage has decreased in areas of intensive land use change, such as 
urbanization and agricultural expansion, while some forested areas have 
shown increases in carbon storage. Specifically, the urban hotspot re
gions, such as the previous top 20 cities, showed the least carbon stor
age. Comparatively, northern areas of Pakistan (having a large 

Table 3 
Carbon pools used to estimate carbon storage in different land use land covers in 
Pakistan.  

Class Ca 
(Mg/ 
Ha) 

Cb 
(Mg/ 
Ha) 

Cs 
(Mg/ 
Ha) 

Cd 
(Mg/ 
Ha) 

Justification 

Forest 54 115 172.5 4.9 (Liang et al., 2021;  
Piyathilake et al., 2022) 

Rangeland 35 86.9 111 3.2 (He et al., 2016; Liang 
et al., 2021; Zhao et al., 
2019) 

Built up 3 0 23.3 2.94 (Liang et al., 2021;  
Piyathilake et al., 2022) 

Water 
Body 

1.6 0 119 0 (Liang et al., 2021) 

Cropland 11.9 99 66 1 (He et al., 2016; Liang 
et al., 2021; Zhao et al., 
2019) 

Bareland 0.63 4.95 111 0 (He et al., 2016; Zhao 
et al., 2019) 

Wetlands 0 0 298 0 (Piyathilake et al., 2022; 
Zhao et al., 2019)  
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Fig. 3. (a) Accuracy assessment metrics (F1-score, Precision, and Recall) for each land use land cover class and each year, and (b) Confusion matrix for each year 
classification. 
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proportion of forest class) showed the highest volume of carbon storage, 
whereas the Thal desert and region of Balochistan province showed the 
least carbon storage. The multi-temporal maps also highlight the 
decreasing trends of carbon storage in the region, where initially in 1990 
the southern region (Sindh) and northern region (Khyber Pakhtunkhwa 
and upper Punjab) showed higher carbon storage than the upcoming 
years. The decreasing trend is prominent in regions undergoing either 
deforestation (northern areas) or agricultural extension (southern 
areas). Furthermore, Fig. 7b shows the total carbon storage value in 
Pakistan each year, in which the carbon storage decreased from 19,464 
Mg/m2 in 1990 to 18,452 Mg/m2 in 2020 (~5% overall reduction). 

Fig. 8 shows the change in carbon storage in Pakistan from 1990 to 
2020, highlighting the spatial distribution and magnitude of carbon loss 
and gain over time. The inset maps in Fig. 8 visualize key regions where 
there has been a considerable increase or decrease in the last three de
cades. Overall, Fig. 8 indicates that there has been a significant decrease 
in carbon storage in some regions of Pakistan, particularly in the 
northwest and southeast parts, due to deforestation and agricultural 
extension, respectively. However, some areas in the northern part of the 
country show an increase in carbon storage, possibly due to reforestation 
and afforestation efforts. The map and its results provide valuable in
formation for policymakers and stakeholders to better understand the 

Fig. 4. (a) Land use land cover (LULC) classified maps, and (b) LULC percent area (%) per class. Note that the colors in the ribbon chart in (b) are in line with the map 
key of LULC maps. For detailed statistics used in Fig. 4b, see Table S2. 
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Fig. 5. Change Transition map showing top 20 cities inset maps (sorted based on population) and cord diagram showing the transition percentage change of different 
classes into urban for Pakistan between 1990 and 2020. 

Fig. 6. Urban Sprawl from 1990 to 2020. Inset maps show the top 20 cities in Pakistan based on population.  
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drivers of carbon loss and gain in Pakistan and to develop effective 
strategies for mitigating climate change and preserving natural 
resources. 

4. Discussion 

4.1. Fostering remote sensing based LULC monitoring to sustain carbon 
storage 

Urbanization and its impacts produce complex challenges for 
developing nations. The unplanned influx of impervious surface at the 
cost of green cover (i.e., grasslands and vegetation cover) results in 
degraded ecosystem services, and loss of carbon storage capacity is 
among the most significant due to its crucial role in climate regulation 
(Fan et al., 2022; Gao et al., 2023; Perminova et al., 2016). This study 
mapped high-resolution LULC change (30 m) at a national scale in 
Pakistan during the past three decades along with its spatial-temporal 
influence on terrestrial carbon storage capacity. Assessments as such 
provide key references to make informed decisions and policies that are 
imperative to sustainable development. For instance, a > 1000% in
crease in built-up areas during 1990–2020 should be a matter of utmost 
concern for the relevant authorities. These results on built-up area 
mapping and its growth over the past three decades are consistent with 
the other available comparable datasets (e.g., Gong et al., 2020; Zhao 
et al., 2020). This rate of built-up area influx in Pakistan is almost double 

that in Southeast Asia (i.e., a 518% increase during 1992–2018) as re
ported by Zhao et al. (2020). Similarly, in comparison with entire Asia 
which experienced ~90% growth during 1990–2018 (Gong et al., 
2020), the built-up area increase in Pakistan is significantly higher. 
Based on the LULC transition analysis provided in this study (i.e., Fig. 5), 
the conversion of rangeland and cropland (47 and 35%, respectively) to 
built-up seems to be the important factor behind the reduced carbon 
storage capacity in Pakistan. Given the importance of cropland and 
rangelands for carbon sequestration and climate change mitigation 
(Booker et al., 2013; Deane McKenna et al., 2022; Horrillo et al., 2021; 
Launay et al., 2021), the regions with significant transition/conversion 
(Fig. 5) should be prioritized for conservation and restoration related 
activities. The high-resolution (30 m) intelligence provided in this study 
can progressively inform and support such actions at local levels. Given 
the rapid increase in the built-up area in Pakistan (Fig. 6) and the ex
pected manifold global urban growth by the end of this century (Li et al., 
2021), we recommend proper monitoring and informed urban planning 
in the country, which does not compromise the carbon storage capacity 
along with other environmental impacts. The remote sensing-based 
high-resolution dataset, such as provided here, on a national scale can 
provide a baseline for that along with providing insights into the 
assessment of grid-level long-term human-environment interactions (Li 
et al., 2021). 

Fig. 7. (a) Total carbon storage (Mg/m2) maps for 1990, 2000, 2010 and 2020, and (b) Total carbon in Millions of Mg each year.  
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4.2. Land use land cover plays significant role in carbon storage capacity 

The Global Carbon Project (available at: https://www.globalcarbo 
nproject.org/) reported that Pakistan’s CO2 emissions increased by 
2.1% in 2019, reaching a total of 199 million metric tons. This situation 
places Pakistan as the world’s 8th largest contributor to carbon emis
sions, even though it is equivalent to 0.5% of global emissions. Moving 
forward, Pakistan’s emissions are expected to increase by 50% by 2030, 
if no initiatives are taken to reduce them. While working on reducing 
emissions is one of its priorities, sustaining natural carbon sinks in 
Pakistan is also crucial to maintain the balance. Pakistan has lost a 
significant amount of its forest cover over the years, due to several 
factors including LULC change and natural hazards, which results in 
reduced carbon sink. Deforestation due to anthropogenic activities is 
one of the major contributors to Pakistan’s increasing carbon emissions, 
as it releases CO2 stored in trees and other vegetation. Connectedly, the 
impact of urbanization on carbon storage in Pakistan is a critical topic 
for sustainable development and ecosystem services. Hence, the findings 
and satellite data-based high-resolution mapping of LULC changes and 
their impact on CSD provide important references for informed planning 
of carbon sink in Pakistan, along with providing opportunities to 
manage the land resources more effectively. The results of our study 
showed that urban areas in Pakistan have increased exponentially over 
the three decades, resulting in a significant reduction in carbon storage. 
This reduction in carbon storage is primarily due to the conversion of 
natural landscapes, such as forests and grasslands, into built-up areas. 
The trends of growing built-up area observed in our study (as shown in 
Fig. 6) aligns with previous studies conducted at local scales in Pakistan 
(Hussain et al., 2022; Saleem et al., 2020a; Waleed and Sajjad, 2022b). 
While urbanization is inevitable, the re-habitation projects have slack
ened the urbanization issues to a greater extent in the last three decades. 

4.3. Sustaining carbon pools via better land use land cover planning 

Our results indicate that carbon stock has been significantly affected 
by urbanization, and from a geographical perspective, there has been a 
mix of increase and decrease in carbon stocks throughout Pakistan. The 
loss of carbon stock is mainly observed in/around big cities having a 
greater expansion of built-up areas and along the Indus River, where a 
significant amount of the population resides. Another significant 
reduction is witnessed in the southern regions along the wetland areas 
(Fig. 8). However, the estimated statistics show that the wetland tran
sition to built-up is <1% (Supplementary Table S3), which ascertains 
that the wetland carbon pool is not that influenced in response to LULC 
changes in Pakistan. Urban areas have low vegetation and fewer trees 
(important carbon sinks), therefore, less carbon is stored in built-up 
regions (Hong et al., 2022). Instead, urban areas contain greater 
amounts of asphalt, concrete, and other non-sequestering materials 
(Mohajerani et al., 2017). Moreover, built-up regions have greater 
pollution levels, which can harm the growth of plants and trees (Saleem 
et al., 2020b). Ultimately, a decrease in carbon stock can be observed 
resulting in global warming and climate change (Kołodyńska-Gawrysiak 
et al., 2023; Sodango et al., 2021). 

In light of the above, we recommend protecting areas with high 
carbon storage ability, such as rangelands, croplands, wetlands, and 
forests. Moreover, additional green spaces can be incorporated by 
identifying areas with reduced carbon storage. Therefore, sustainable 
land use planning and management are imperative to mitigate the 
negative impact of urbanization on carbon stock. 

Many historical nature conservation projects in Pakistan, such as the 
Billion Tree Tsunami Reforestation in 2014 (Sabir et al., 2020), wetlands 
conservation projects by WWF (Shafi et al., 2023), and The Revival of 
Balochistan Water Resources Programme (RBWRP) (Ahmad, 2011) are 
among the initiatives that contributed to the natural landscape conser
vation in the country. Resultantly, despite a decrease in carbon stocks, 

Fig. 8. High resolution (30 m) mapping of total carbon storage change (Mg/m2) in Pakistan over the past three decades (1990–2020).  

M. Waleed et al.                                                                                                                                                                                                                                

https://www.globalcarbonproject.org/
https://www.globalcarbonproject.org/


Environmental Impact Assessment Review 105 (2024) 107396

12

many areas also see an increase in carbon storage. For instance, the 
northern regions (e.g., Khyber Pakhtunkhwa: Fig. 8) experienced an 
increase in carbon storage during 1990–2020. This shows the positive 
impact of the afforestation projects, which significantly increased forest 
area and hence, the carbon stock capacity in the northern region of 
Pakistan. These findings are in line with Goheer et al. (2023), who re
ported an increase of 32% in forest areas in Khyber Pakhtunkhwa during 
1990–2020—increasing the carbon sink capacity of this region. Ac
cording to our results, the area of forest class increased from ~21,400 
Km2 in 2010, to ~27,100 Km2 in 2020; a nationwide increase of 26.6% 
over the recent decade (i.e., 2010–2020). Hence, the increase in carbon 
storage in northern regions is reasonable over the studied period. 

However, it should be noted that despite the increase in some re
gions, a ~ 5% overall decrease in carbon storage is evident from this 
study (Fig. 7). Hence, the high-resolution mapping of carbon loss pro
vided key information on the regions (i.e., Figs. 7 and 8), which should 
be prioritized for measures to establish and preserve carbon sinks in 
Pakistan in the face of urbanization and climate change. Similarly, the 
findings on LULC change and CSD provided in this study highlight the 
need for policies and management approaches that support sustainable 
urbanization, which does not compromise the carbon storage capacity of 
Pakistan in the face of the projected increase in its short- and long-term 
emissions. Such policies should focus on promoting green infrastructure, 
such as parks, green spaces, and urban forests, which can contribute to 
enhancing carbon storage and sequestration in urban areas. In short, 
designing and implementing sustainable land use practices and policies 
that prioritize carbon sequestration, such as the conservation of natural 
landscapes, afforestation, and reforestation, needs to be encouraged in 
Pakistan. 

The validation of total carbon stock estimation in Pakistan poses a 
significant challenge due to the absence of a national-scale study. Pre
vious studies have primarily focused on forest carbon stock assessment 
at a small scale, resulting in a limited understanding of carbon storage in 
other land use classes, such as rangeland, agriculture, and wetlands (Ali 
et al., 2020; Khan et al., 2020). To address this limitation, we relied on 
previously published literature for carbon pool values, as presented in 
Table 3. While these values are accurate and field-validated, variances 
may arise due to differences in geographical locations (Toru and Kibret, 
2019). Therefore, to strengthen national-level carbon storage assess
ment, on-field carbon storage assessments per land use class in Pakistan 
are essential. 

4.4. Importance of policies and management approaches for carbon 
management 

The implications of this study for sustainable development and 
ecosystem services are significant. The analysis highlights the urgent 
need to adopt policies and management approaches that support sus
tainable urbanization and reforestation projects in order to conserve 
carbon storage. As the results demonstrate, urbanization has led to a 
reduction in carbon storage in terrestrial ecosystems, and this trend is 
likely to continue without intervention. Therefore, it is crucial to design 
and implement programs that prioritize the conservation of carbon 
storage while promoting sustainable land use practices. The positive 
impact of reforestation projects on carbon stock and forest area in the 
northern region further highlights the potential benefits of such initia
tives. By promoting sustainable urbanization and reforestation, policy
makers and managers can simultaneously address the challenges of 
climate change and ecosystem degradation, while also creating oppor
tunities for sustainable development and improved ecosystem services 
(Canedoli et al., 2020; Jiang et al., 2023). This study provides important 
insights that can guide the creation of successful programs for sustain
able land use and carbon management in Pakistan and can also be a 
useful resource for other countries facing similar challenges. 

4.5. Fostering sustainable land use practices for effective future carbon 
management 

The findings of this study provide important insights for future di
rections in sustainable land use and carbon management in Pakistan. 
One key direction is to prioritize policies and management approaches 
that promote sustainable urbanization, particularly in emerging cities 
that are experiencing high rates of urban sprawl (Jiang et al., 2023; Toru 
and Kibret, 2019). This could involve measures such as incentivizing 
compact, high-density urban development and discouraging the con
version of natural ecosystems to built-up areas (Wei et al., 2023; Zhang 
et al., 2015). Another direction is to further promote reforestation pro
jects, particularly in regions where forest cover has declined signifi
cantly. In addition to mitigating the impact of urbanization on carbon 
storage, reforestation can also support the conservation of biodiversity, 
water resources, and other ecosystem services (Aneseyee et al., 2022). 
This study highlighted an increase in CSD in northern areas, primarily in 
the Khyber Pakhtunkhwa region, which was made possible as a result of 
a massive afforestation initiative done through the Billion Tree Tsunami 
project. Considering this, future studies can evaluate the success and 
failure of afforestation and conservation policies, particularly for the 
Billion Tree Tsunami project. 

Future studies can also focus on the assessment of CSD at the local 
administrative level, such as district and municipal levels, which can 
eventually help decision-makers to understand the spatial distribution of 
carbon sequestration potential and identify areas with high or low car
bon storage capacity. Furthermore, local-level CSD quantification will 
facilitate engagement with local communities, enabling collaboration 
and participation in carbon sequestration initiatives. Additionally, 
future studies can incorporate short and long terms simulated LULC 
scenarios (Fan et al., 2023). Short-term predicted scenarios can assist in 
prioritizing immediate opportunities for carbon sequestration and 
emission reduction, which can help in short-term interventions such as 
afforestation projects. On the contrary, long terms modelling scenarios, 
along with projected factors like population growth, land-use changes, 
and climate projections, can assess the long terms impacts of policy 
choices and development pathways on carbon storage. 

Finally, there is a need to strengthen monitoring and evaluation 
systems to track changes in land use and carbon storage over time and to 
support evidence-based decision-making. By adopting such measures, 
Pakistan can promote sustainable land use and carbon management 
while also contributing to global efforts to address climate change and 
promote sustainable development. This study acts as a baseline for high- 
resolution mapping of CSD in response to LULC change in Pakistan. 

5. Conclusions 

Pakistan is making progress in addressing climate change, but lacks 
comprehensive assessment and high-resolution urbanization, and car
bon storage data for informed and sustainable land use planning. To 
counter this, we leverage remote sensing data to assess land use tran
sitions and their influence on carbon storage dynamics in Pakistan from 
1990 to 2020. Our findings depict that since 1990, rapid change in 
landscape has been observed, primarily an increase in the built-up area 
at the cost of cropland and rangeland. This conversion compromises the 
carbon storage capacity in Pakistan. For instance, our findings indicate 
that the urban areas have expanded exponentially from ~3314 Km2 in 
1990 to ~37,786 Km2 (an increase of ~1040%), resulting in an overall 
reduction in carbon storage from 19,464 Mg/m2 in 1990 to 18,452 Mg/ 
m2 in 2020 (a decrease of ~ − 5%). This situation can have serious 
consequences in the form of increased emission levels, loss of biodi
versity due to conserving of ecosystems, and reduced outcomes of 
climate change mitigation measures. 

Overall, a rapid transition in the landscape has been observed in 
Pakistan, specifically from rangeland (~47%) and cropland (~35%) to 
the built-up class. On the contrary, some afforestation projects have 
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increased carbon stock in northern regions of Pakistan and thus 
balancing the overall CSD fluctuation, somehow, in the country during 
1990–2020. The study emphasizes the importance of sustainable ur
banization policies and management strategies that prioritize carbon 
pools and contribute to national climate change mitigation goals. We 
further ascertain the utilization and applicability of remote sensing and 
earth observation data for grid-level information provisioning to support 
effective environmental planning and management. The high-resolution 
mapping of CSD presented in this study enhances our understanding of 
the interactions between urbanization and carbon sequestration dy
namics, providing valuable insights for informed decision-making and 
sustainable land management practices. One of the key deliverables 
from this study is the grid level (30 m spatial resolution) information on 
CSD in response to LULC transitions, which can be useful to further 
determine the human-environment interactions to provide solutions 
which can support sustainable development. For instance, management 
of carbon storage capacity via informed land management practices can 
support the achievement of several sustainable development goals by 
promoting climate action (SDG 13), reducing poverty (SDG 1) and 
hunger (SDG 2), protecting biodiversity (SDG 15), and promoting clean 
water and sanitation (SDG 6). 
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